
© 2025 PTC Inc. All Rights Reserved.

Kepware Edge

Table of Contents

Table of Contents 2

Introduction 10

Kepware Edge System Requirements 10

Configuration API Service — Architecture 11

Installation 11

Installation — Deploying the Container 12

Installation — Configure the Project 15

Application Data 15

Licensing 15

Command Line Interface — edge_admin 17

Getting Started 18

Configuration API Service — Documentation Endpoint 19

Configuration API Service — Endpoint Mapping 19

Configuration API Service — Health Status Endpoint 20

Enabling Interfaces 21

IoT Gateway — MQTT 21

Configuring the IoT Gateway 22

Configuring Self-Signed Certificates for MQTT Broker Connection for MQTT Agent 23

Interfaces and Connectivity 23

OPC UA Interface 23

OPC UA Certificate Management 24

Configuring the ThingWorx Native Interface 25

ThingWorx Native Interface Certificate Management 26

Components and Concepts 26

What is a Channel? 26

What is a Device? 26

What is a Tag? 27

Tag Properties — General 27

System Tags 28

Property Tags 35

Statistics Tags 36

Dynamic Tags 37

Tag Properties — Scaling 38

What is a Tag Group? 39

Tag Group Properties 40

What is the Alias Map? 40

Alias Properties 40

What is the Event Log? 40

Properly Name a Channel, Device, Tag, and Tag Group 40

Configuration API Service 41

www. ptc.com

2

Kepware Edge

Security 41

Documentation 41

Configuration API Service — Concurrent Clients 41

Configuration API Service — Log Retrieval 42

Configuration API Service — Content Retrieval 43

Configuration API Service — Data 51

Configuration API Service — Invoking Services 55

Configuration API Service — Reinitialize Runtime Service 56

Configuration API Service — Project Load 57

Configuration API Service — Project Save 58

Configuration API Service — Automatic Tag Generation 59

Configuration API Service — Project Example 60

Configuration API Service — Response Codes 61

Project Properties (via API Commands) 61

Project Properties — OPC UA 64

Configuration API Service — Channel Properties 66

Configuration API Service — Creating a Channel 66

Configuration API Service — Updating a Channel 67

Configuration API Service — Removing Channel 68

Configuration API Service — Device Properties 68

Configuration API Service — Creating a Device 69

Configuration API Service — Updating a Device 69

Configuration API Service — Removing a Device 70

Configuration API Service — Creating a Tag 70

Configuration API Service — Updating a Tag 72

Configuration API Service — Removing a Tag 73

Configuration API Service — Creating a Tag Group 73

Configuration API Service — Updating a Tag Group 74

Configuration API Service — Removing a Tag Group 75

Configuration API Service — Property Validation Error Object 75

Configuration API Service — User Management 75

Configuration API Service — Creating a User 79

Configuration API Service — Creating a User Group 79

Configuration API Service — Updating a User 79

Configuration API Service — Updating a User Group 80

Configuration API Service — Configuring User Group Project Permissions 80

Configuration API Service — Configuring Licensing Server 81

Configuration API Service — OPC UA Endpoint 82

Configuration API Service — Creating a UA Endpoint 84

Configuration API Service — Updating a UA Endpoint 84

Configuration API Service — Removing a UA Endpoint 85

www. ptc.com

3

Kepware Edge

Connecting with an OPC UA Client Using UaExpert 85

Event Log Messages 87

The Config API SSL certificate contains a bad signature. 87

The Config API is unable to load the SSL certificate. 87

Unable to start the Config API Service. Possible problem binding to port. 87

The Config API SSL certificate has expired. 87

The Config API SSL certificate is self-signed. 87

Configuration API started without SSL on port <port number>. 87

Configuration API started with SSL on port <port number>. 87

The <name> device driver was not found or could not be loaded. 87

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>').
Remove the conflicting driver and restart the application. 88

Invalid project file. 88

Unable to add channel due to driver-level failure. 88

Unable to add device due to driver-level failure. 88

Version mismatch. 88

Unable to load project <name>: 89

Unable to back up project file to '<path>' [<reason>]. The save operation has been aborted. Verify the
destination file is not locked and has read/write access. To continue to save this project without a
backup, deselect the backup option under Tools | Options | General and re-save the project. 89

<feature name> was not found or could not be loaded. 89

Unable to save project file <name>: 89

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try
again. 90

<feature name> is required to load this project. 90

Unable to load the project due to a missing object. | Object = '<object>'. 90

Invalid Model encountered while trying to load the project. | Device = '<device>'. 90

Cannot add device. A duplicate device may already exist in this channel. 90

Auto-generated tag '<tag>' already exists and will not be overwritten. 90

Unable to generate a tag database for device '<device>'. The device is not responding. 90

Unable to generate a tag database for device '<device>': 91

Auto generation produced too many overwrites, stopped posting error messages. 91

Failed to add tag '<tag>' because the address is too long. The maximum address length is <number>. 91

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 91

Rejecting attempt to change model type on a referenced device '<channel device>'. 92

Validation error on '<tag>': <error>. 92

Unable to load driver DLL '<name>'. 92

Validation error on '<tag>': Invalid scaling parameters. 92

Device '<device>' has been automatically demoted. 92

Unable to load plug-in DLL '<name>'. 93

Unable to load driver DLL '<name>'. Reason: 93

Unable to load plug-in DLL '<name>'. Reason: 93

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 93

No tags were created by the tag generation request. See the event log for more information. 94

<Product> device driver loaded successfully. 94

www. ptc.com

4

Kepware Edge

Starting <name> device driver. 94

Stopping <name> device driver. 94

<Product> device driver unloaded from memory. 94

Simulation mode is enabled on device '<device>'. 94

Simulation mode is disabled on device '<device>'. 94

Attempting to automatically generate tags for device '<device>'. 94

Completed automatic tag generation for device '<device>'. 94

A client application has enabled auto-demotion on device '<device>'. 94

Data collection is enabled on device '<device>'. 95

Data collection is disabled on device '<device>'. 95

Object type '<name>' not allowed in project. 95

Created backup of project '<name>' to '<path>'. 95

Device '<device>' has been auto-promoted to determine if communications can be re-established. 95

Failed to load library: <name>. 95

Failed to read build manifest resource: <name>. 95

A client application has disabled auto-demotion on device '<device>'. 95

Tag generation results for device '<device>'. | Tags created = <count>. 95

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 95

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten = <count>. 96

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 96

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 96

User group has been created. | Group = '<name>'. 96

User added to user group. | User = '<name>', Group = '<name>'. 96

User group has been renamed. | Old name = '<name>', New name = '<name>'. 96

Permissions definition has changed on user group. | Group = '<name>'. 96

User has been renamed. | Old name = '<name>', New name = '<name>'. 96

User has been disabled. | User = '<name>'. 96

User group has been disabled. | Group = '<name>'. 96

User has been enabled. | User = '<name>'. 96

User group has been enabled. | Group = '<name>'. 96

Password for user has been changed. | User = '<name>'. 97

The endpoint '<url>' has been added to the UA Server. 97

The endpoint '<url>' has been removed from the UA Server. 97

The endpoint '<url>' has been disabled. 97

The endpoint '<url>' has been enabled. 97

User has been deleted. | User = '<name>'. 97

Group has been deleted. | Group = '<name>'. 97

Connection to ThingWorx failed. | Platform = <host:port resource>, error = <reason>. 97

Error adding item. | Item name = '<item name>'. 97

Failed to trigger the autobind complete event on the platform. 98

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port resource>, error =
<error>. 98

One or more value change updates lost due to insufficient space in the connection buffer. | Number of
lost updates = <count>. 98

Item failed to publish; multidimensional arrays are not supported. | Item name = '%s'. 98

www. ptc.com

5

Kepware Edge

Store and Forward datastore unable to store data due to full disk. 99

Store and Forward datastore size limit reached. 99

Connection to ThingWorx was closed. | Platform = <host:port resource>. 99

Failed to autobind property. | Name = '<property name>'. 99

Failed to restart Thing. | Name = '<thing name>'. 100

Write to property failed. | Property name = '<name>', reason = <reason>. 100

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 100

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 100

The server is configured to send an update for every scan, but the push type of one or more properties
are set to push on value change only. | Count = <count>. 100

The push type of one or more properties are set to never push an update to the platform. | Count =
<count>. 101

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name
= '<name>'. 101

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 101

Error pushing property updates to thing. | Thing name = '<name>'. 101

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store
size (updates) = <count>. 102

Store and Forward datastore reset due to file IO error or datastore corruption. 102

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user name>'. 102

Configuration Transfer to ThingWorx Platform failed. 102

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 103

Failed to delete stored updates in the Store and Forward datastore. 103

Configuration Transfer from ThingWorx Platform failed. 103

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 103

Check that your Application Key is properly formatted and valid. 103

The maximum number of configured Industrial Things has been reached, count = <number>. Consider
increasing the value of the Max Thing Count. 104

The maximum number of updates has been reached, count = <count>. 104

A publish to Thingworx has timed out. 104

Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<name>'. 104

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 104

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 105

Serviced one or more autobind requests. | Count = <count>. 105

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration
API. 105

Resumed pushing property updates to thing: the error condition was resolved. | Thing name =
'<name>'. 105

Configuration transfer from ThingWorx initiated. 105

Configuration transfer from ThingWorx aborted. 105

Successfully deleted stored data from the Store and Forward datastore. 105

Store and Forward mode changed. | Forward Mode = '<mode>'. 106

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<location>'. 106

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to
reissue the certificate. 106

Failed to import server instance cert: '<cert location>'. Please use the OPC UA Configuration Manager
to reissue the certificate. 106

www. ptc.com

6

Kepware Edge

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the cer-
tificate. 106

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error =
<error code>, Details = '<description>'. 107

The UA Server failed to register with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 107

Unable to start the UA server due to certificate load failure. 107

Failed to load the UA Server endpoint configuration. 107

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 108

The UA Server failed to initialize an endpoint configuration. | Endpoint Name: '<name>'. 108

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL: '<endpoint url>'. 108

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL: '<endpoint
url>'. 108

Com port is in use by another application. | Port = '<port>'. 108

Unable to configure com port with specified parameters. | Port = COM<number>, OS error = <error>. 109

Driver failed to initialize. 109

Unable to allocate thread resource. Please check the memory usage of the application. 109

Com port does not exist. | Port = '<port>'. 109

Error opening com port. | Port = '<port>', OS error = <error>. 109

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 109

Winsock shut down failed. | OS error = <error>. 110

Winsock initialization failed. | OS error = <error>. 110

Winsock V1.1 or higher must be installed to use this driver. 110

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 110

Device is not responding. 110

Device is not responding. | ID = '<device>'. 111

Serial communications error on channel. | Error mask = <mask>. 111

Invalid array size detected writing to tag <device name>.<address>. 111

Unable to write to address on device. | Address = '<address>'. 112

Items on this page may not be changed while the driver is processing tags. 112

Specified address is not valid on device. | Invalid address = '<address>'. 112

Address '<address>' is not valid on device '<name>'. 112

This property may not be changed while the driver is processing tags. 112

Unable to write to address '<address>' on device '<name>'. 112

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 113

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 113

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 113

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 113

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 114

%s | 114

<Name> Device Driver '<name>' 114

Could not load item state data. Reason: <reason>. 114

Could not save item state data. Reason: <reason>. 114

Feature '<name>' is not licensed and cannot be used. 115

Failed to load the license interface, possibly due to a missing third-party dependency. Run in Time Lim-
ited mode only. 115

Failed to initialize licensing. Unable to load the demo file license (Error %1!x!). 115

www. ptc.com

7

Kepware Edge

Failed to initialize licensing. Unable to initialize the licensing identity (Error %1!x!). 115

Failed to initialize licensing. Unable to initialize trusted storage (Error %1!x!). 115

Failed to initialize licensing. Unable to initialize the licensing publisher (Error %1!x!). 116

Failed to initialize licensing. Unable to establish system time interface (Error %1!x!). 116

Failed to initialize licensing (Error <error code>) 116

Failed to process the activation response from the license server (Error: %x, Process Codes: %s, Mes-
sage Codes: %s) 116

Failed to create an activation request (Error %x) 116

Request failed with license server. 116

Time Limited mode has expired. 116

Maximum device count exceeded for the lite version '<number>' license. Edit project and restart the
server. 117

Maximum runtime tag count exceeded for the lite version '<number>' license. Edit client project and
restart the server. 117

Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'. 117

<Object type name> limit of <maximum count> exceeded on feature '<name>'. 118

The FlexNet Licensing Service must be enabled to process licenses. Failure to enable the service res-
ults in Time Limited mode. 118

The <name> feature license has been removed. The server will enter Time Limited mode unless the
license is restored before the grace period expires. 118

License for feature <name> cannot be accessed [error=<code>] and must be reactivated. 118

Feature %1 is time limited and will expire on %2 at %3. 119

Feature %1 is time limited and will expire on %2 at %3. 119

Object count limit has been exceeded on feature <name>. Time limited usage will expire at <date/-
time>. 119

Feature count limit exceeded on <name>. Time limited usage will expire at <date/time>. 119

Time limited usage period on feature <name> has expired. 119

Failed to obtain licenses from the license server. 119

The license for this product has expired and will soon stop functioning. Please contact your sales rep-
resentative to renew the subscription. 119

Licensing for this system is currently provided by a file-based license. 119

Failed to connect to the license server. 119

Failed to return licenses to the LLS. 120

Maximum driver count exceeded for the lite version '<name>' driver license. Edit project and restart the
server. 120

Connecting to the license server. 120

Successful communication with the license server. Renew interval established at %d seconds. 120

License synchronization required. Initiating request... 120

Performing initial license request to the license server. 120

Connected to license server, no changes. 121

Requesting return of all borrowed licenses... 121

Cannot add item. Requested count of <number> would exceed license limit of <maximum count>. 121

The version of component <name> (<version>) is required to match that of component <name> (<ver-
sion>). 121

Maximum channel count exceeded for the lite version '<name>' driver license. Edit project and restart
the server. 121

%s is now licensed. 122

www. ptc.com

8

Kepware Edge

Index 123

www. ptc.com

9

Kepware Edge

Introduction
Version 1.849

Kepware Edge is a connectivity server that enables users to connect diverse automation devices and sensors to a
wide variety of digital solutions. It offers the stability, performance, and security that is essential for industrial envir-
onments. Kepware Edge is a container-based solution, accelerating deployment; reduces maintenance costs and
mitigates cybersecurity risks. Built by the industrial connectivity experts, Kepware Edge eliminates the inter-
operability challenges associated with implementing digital solutions.

Kepware Edge System Requirements
The product has been tested and verified on modern computer hardware running Red Hat Enterprise Linux. It cur-
rently only runs on X86_64 platforms.

System Requirements

l Linux x86-64 CPU Architecture
l Container runtime: Any modern docker/OCI compliant container runtime

(Docker, Kubernetes, Podman, Rancher, etc.)
l Host OS: Any modern x86-64 OS

(i.e. RHEL, Ubuntu, Fedora, Windows, Windows Server, MacOS, etc.)

Knowledge Requirements
This user manual expects the user has a working knowledge of:

l Linux operating system and commands
l RESTful interfaces
l Command line or API utilities, such as Postman or cURL
l Container orchestration tools (Docker, Podman, Kubernetes, etc.)
l ThingWorx Platform (if used)
l OPC UA configuration and connectivity (if used)
l MQTT Client interfaces and connectivity (if used)

If additional information is required, consult the vendors and websites related to those tools and technologies in
use in your environment.

www. ptc.com

10

Kepware Edge

Configuration API Service — Architecture
The diagram below shows the layout of the components. The Configuration API Service is installed on the same
machine with the server.

Installation
Before installing Kepware Edge, verify the installer hash to ensure it is the official, secure file. To generate the hash
locally, run the following command and compare the results to the hash published online.
$ sha256sum kepware_edge*

1. Download and install the license server (instructions in the user manual).

2. Download the installation file from MyKepware (account required).

3. Unzip the archive file.

4. Run the following command: sudo ./setup-linux-x64.run.

5. Follow the wizard instructions.

6. Create an administrator password and complete the installation.

A password must be set for the Kepware Edge Administrator account during installation.
Administrator passwords must be at least 14 characters and no more than 512 characters. Passwords should be

at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special characters.
Choose a strong unique password that avoids well-known, easily guessed, or common passwords. Passwords
greater than 512 characters will be truncated.

www. ptc.com

11

https://www.ptc.com/en/support/article/CS278624
https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Edge/1_10/tke_licensing_server
https://my.kepware.com/s/

Kepware Edge

The Administrator user account password cannot be reset, but additional administrative users can be added to
the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

Installation — Deploying the Container
Kepware Edge is designed as a container application that can be deployer in various container runtime envir-
onments. The image contains all prerequisites to allow the runtime to operate and can be deployed using container
runtime management solutions (Docker, Podman, etc) or orchestration tools built on Kubernetes.
Tip: Two templates are provided to help with the initial deployment of Kepware Edge; a Docker Compose file and

a Kubernetes Manifest file.
Note: Update the variables in these templates before deploying.

Import the container images .tar files into the container runtime environments local repository or your own image
repository.
Tips:

If using a remote repository, it must be accessible by the runtime environment to be used.
For Docker or container runtimes like Podman or Rancher, use the Docker load command.
For Kubernetes variants, there often use container as the container runtime. Use the crictl commands to import into
the local k8s clusters environment.

Starting a Kepware Edge Container Instance – Docker Run Command
To run an instance of the Kepware Edge Docker image using Docker Run, execute the following command:
docker run -d -e USE_SAMPLE_PROJECT=<Use sample project flag> -p 57513:57513 -p
49330:49330 --init --name <Container name> --mount type=bind,source=<Admin password source
directory>,target=/opt/kepedge/v1/secrets --mount type=bind,source=<user data source dir-
ectory>, target=/opt/kepedge/v1/user_data --mount type=bind,source=<.config source dir-
ectory>, target=/opt/kepedge/v1/.config <Image name>
where:
• <Use sample project flag> (optional). Creates an environmental variable to initialize with the default sample pro-
ject. Set to ‘TRUE’ to start with a sample project.
• <Admin password source directory> is on the host machine that contains the password.txt file.
See the Administrator Password section for more information.

• <user data source directory> is on the host machine that is used to share files with the container.
See the Sharing Files with the Container for more information.

• <.config source directory> is on the host machine that is used to persist the configuration files from the container.
See the Persisting Data to the Host for more information

• <Container name> is the name of the container instance
• <Image name> is the name of the container image.
For additional details about Docker run command options, see Docker Run documentation.

Starting a Kepware Edge Container Instance – Docker Compose
Docker Compose provides users with the ability to manage multiple services and containers through a single
deployment method. Parameters in a Docker Compose .yaml file use the same parameters as the Docker run com-
mand above.
Tip: An example Docker Compose file is available to show the basic configuration necessary to deploy and per-

sist configuration data.

Starting a Kepware Edge Container Instance – Kubernetes Manifest
Kubernetes manages workloads where Pods are the smallest deployable units and are typically container
instances of the workload. Manifest yaml files can be used to deploy pods and services as needed.
Tip: An example Kubernetes manifest file is available to show the basic configuration necessary to deploy and

persist configuration data.

Required Port Binding
The -p option in the Docker run command specifies the port or range of ports to publish from container to host using
the format:
<Host Port>:<Container Port>

The ports in the example above are configured by default:
• The default https port for the Configuration API is 57513.
• The default port for UA endpoints is 49330.

www. ptc.com

12

https://docs.docker.com/reference/cli/docker/container/run/

Kepware Edge

Tip: Other ports can be configured as needed. For example, http port for Configuration API could be used or addi-
tional OPC UA endpoints can be configured. If a port other than the defaults listed above is required, include addi-
tional ports when executing the Docker run command. Alternatively, a range of ports can be specified.
See the Docker Links User Guide for information on how to manipulate ports in Docker.
See the Docker Networking Overview for information on all networking options.

Additional options can be included in the Docker run command to enable data sharing between the host and con-
tainer.
See Sharing Project Files with the Container section for an example.

Administrator Password
A password for the administrator account must be set at container runtime. During the container initialization, Kep-
ware Edge searches for a password.txt file that contains the administrator account password or looks for an envir-
onmental variable (non-production/insecure). The password must be between 14 and 512 characters. Set the
permissions on this file such that the Docker container user has read and write permissions. Place this file in a dir-
ectory accessible to the container via a bind mount, as described in the Starting a Kepware Edge container
instance section.
Note: When the Kepware Edge container instance starts, it deletes the password.txt file.
Caution: An insecure and non-production option is to pass the password as an environmental variable named

“EDGEADMINPW” when deploying the container. The password still needs to follow all character and length
requirements.

Sharing Files with the Container
Various configuration and files are necessary to share with the Kepware Edge instance running in the container.
For example, project files can be loaded using the Configuration API projectLoad service. This service requires
files to be located in a specific directory created at container run time:
/opt/kepedge/v1/user_data

To move any files to the container, a method of file sharing between the host and container must be implemented.
Binding a volume as shown in the Docker Run command example can allow the folder to be accessible in the host
running the container runtime. This allows the data in this folder to also persist to the host.

A non-binding option to share data with the container is to directly copy files into the container file system using the
docker cp command:
docker cp <source file> <container name>:/opt/kepedge/v1/user_data

Persisting Data to the Host
Persisting configuration data is strongly recommended while using Kepware Edge in a container. Configuration
data, such as the project file, OPC UA certificates and endpoints, user management configuration, and other data
are stored in the /opt/kepedge/v1/.config folder in the container file system. Persisting this folder allows for a con-
tainer to be redeployed due to failure or planned updates while keeping all configuration data from the previous run-
ning state.

It is also critical to ensure that the location for the configuration data will be accessible to the container instance.
Hosting configuration data location in file storage locations that may not be always accessible is highly discouraged
to ensure proper configuration persistence and storage by Kepware Edge.

Volumes can be used to share and persist data used by Kepware Edge with the host machine. There are multiple
options depending on whether a container runtime like Docker is used or a variant of Kubernetes.

For container runtimes like Docker or Podman, common approaches are to use volumes managed by the runtime
or bind mounts. The Docker run command above provides an example that is using binds that require the host
folder location to bind to in the configuration.
Note: The target parameters must not be modified from this example. These directories are created at container

run time for the purpose of storing application data and are not configurable.
See the Docker Volumes User Guide for information on volume mounting options.

For Kubernetes environments, Persistent Volume Claims need to be created to ensure that configuration data per-
sists through pod redeployments and updates.
See the Kubernetes Persistent Volume Claims User Guide for information on persistent volume claims

options.

www. ptc.com

13

https://docs.docker.com/network/links
https://docs.docker.com/network/
https://docs.docker.com/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Kepware Edge

Note: Do not mount more than one container to a shared .config directory. Each unique instance of Kepware
Edge needs its own data store for configuration. This is not supported and can result in undefined behavior.

Permissions
To access the specified data source directory on the host, user and group entities identical to those created for Kep-
ware Edge at container run time must exist on the host and be granted the appropriate permission on that directory,
where group: kepedge and user: kepedge.
Note: The host and container user and group entities must have matching UID and GID.

Configuring a Kepware Edge Container Instance
The Kepware Edge instance is operational after executing the above "docker run" command. To manage cer-
tificates for northbound interfaces or configure other administrative options, connect to a command shell on the con-
tainer with the following command:
docker exec -it <Container Name> /bin/bash

From the command shell, the "edge_admin" command-line tool can be used to perform these actions.
See the Command-Line Edge Admin for more information on this tool.
Note: The Kepware Edge runtime must be reinitialized through the Configuration API or restarted after making

changes to the UA Endpoint configuration. Restarting the container can be accomplished by running the "docker
stop" followed by "docker start" command.

Managing OPC UA Certificates
The preferred method for managing OPC UA certificates is to share the trusted certificates through the mounted
.config folder. This allows trusted client certificates to be added or updated in the trust store without connecting to
the container with a command shell.

UA servers require a certificate to establish a trusted connection with each UA client. For the server to accept
secure connections from a client, the client's certificate must be imported into the trusted certificate store used by
the OPC UA server interface. Management of the UA certificates can be done either using the edge_admin CLI
application or by saving the certificates to the configuration data folder.

Using the edge_admin CLI
To import an OPC UA certificate into the trust store:
./edge_admin manage-truststore -i MyCertificateName.der uaserver

To view the UA server trust store and the thumbprints of the certificates:
./edge_admin manage-truststore --list uaserver

Using the .config Data Folder
UA certificates can also be managed directly through .config data folder. Certificates for the UA server to use are
maintained in the following directory: <installation_directory>/.config/UA/Server

Trusted certificates are located in the following directory:
<installation_directory>/.config/UA/Server/cert

Rejected certificates are located in the following directory:
<installation_directory>/.config/UA/Server/RejectedCertificates

To trust a certificate, copy the client instance certificate file into the trusted certificates directory. If a rejected cer-
tificate needs to be trusted, move the client instance certificate in the rejected certificate directory to the trusted cer-
tificates directory.
Note: The certificate files need to have read access by the installed user account, kepedge by default, for the

server application to access the certificate for validation.

Event Log
In a container environment, log services, such as Docker log service, are used to monitor information about the run-
ning container. Kepware Edge can be configured to send all event log messages to *STDOUT* to make the mes-
sages accessible through the container runtime or kubernetes log services.
To enable this, use the Configuration API and set the Log to Console properties in the Admin properties as shown
below.

www. ptc.com

14

Kepware Edge

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/admin

Body:
{ "libadminsettings.EVENT_LOG_LOG_TO_CONSOLE": true }
For additional details about monitoring the Docker log service, see the Docker log documentation.

Installation — Configure the Project
Before installing Kepware Edge, verify the installer hash to ensure it is the official, secure file. To generate the hash
locally, run the following command and compare the results to the hash published online.
$ sha256sum kepware_edge*

Configure the Project
For full project load and save capabilities, the API provides a few services depending on the use case.

l ProjectLoad or ProjectSave service calls allow you to load or save a complete project file to the user_data
folder that is volume mounted for access.

l Project Import and Export calls that allow you to save and retrieve full project information as JSON data
through the RESTful API calls.

Documentation is available in JSON format at the “/doc” endpoint of the Configuration API:
https://<hostname_or_ip>:<port>/config/v1/doc

An open-source documentation viewer to help navigate the doc endpoint is also available at the following Github
link:
https://github.com/PTCInc/Kepware-Example-Scripts/tree/-
master/Config%20API/Config%20API%20Endpoint%20and%20Property%20Viewer

Application Data
The user_data and .config volume mounted directories are created in the </opt/kepedge/v1> path. The user_data
directory is the relative path where all project files are saved to and loaded from using the Configuration API, as
well as where files to support automatic tag generation (ATG) should be placed.
Note: All files in the user_data directory must be world readable or owned by the Linux user and group that were

created during installation, which is kepedge by default.

Any authorized Linux user should be added to the user group that was created during installation to have the
proper permissions to interact locally with this folder. All actions the runtime uses to interact with this folder use the
Linux user configured during installation, which is kepedge by default.
Note: Any directories created in the user_data directory must be writeable by members of the Kepware Edge

group, kepedge. Files in the user_data directory must be either world readable or owned by the group set up during
installation, which is kepedge.

The .config directory stores currently running configuration data of the runtime, including the currently running pro-
ject file, certificate information, and other instance-specific data.
Backing up the folder containing the mounted .config folder is STRONGLY RECOMMENDED as part of an applic-

ation backup strategy.
See Configuration Backup and Restore for more information.

Licensing
Licensing is provided by a license server. If a license cannot be obtained from the license server, unlicensed func-
tionality cannot be used.

See Also: Kepware Edge License Server User Manual

Installing a Demo License
Demo licenses are time-limited, but fully functional to allow evaluation of the software. They are distributed by the
license server just as a purchased production license is.
See Also: Kepware Edge License Server User Manual

www. ptc.com

15

https://docs.docker.com/engine/reference/commandline/logs/
https://www.ptc.com/en/support/article/CS278624
backup-restore.htm
https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Edge/1_10/tke_licensing_server
https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Edge/1_10/tke_licensing_server

Kepware Edge

Configuring the License Server Connection

The license server connection can be configured using either the edge_admin command line tool or the Con-
figuration API.

1. Set the IP address or host name of the server where the license server is running:
Using Edge Admin:
./edge_admin manage-licensing -l <server_address>

Using the Configuration API:
Endpoint: (PUT)
https://<hostname_or_ip>:<port>/config/v1/admin

Body:
{
"libadminsettings.LICENSING_SERVER_NAME": "192.168.1.1"
}

2. Import the license server certificate used when configuring the license server:
Using Edge Admin:
./edge_admin manage-truststore -i <cert_file> licensing

3. Enable the license server connection:
Using Edge Admin:
./edge_admin manage-licensing --lls-enable

Using the Configuration API:
Endpoint: (PUT)
https://<hostname_or_ip>:<port>/config/v1/admin

Body:
{
"libadminsettings.LICENSING_SERVER_ENABLE": true
}

Note: The server can be configured to run with a self-signed certificate. This configuration is recommended for
testing only.

See Also: Configuration API Service — Configuring Licensing Server

License Recheck
The server periodically checks the license state to verify it is up to date. The server reaches out to the license
server requesting to borrow a license every specified check period when a feature in use requires a license. To trig-
ger an immediate check of the license state, use the commands below. This feature might be helpful if new licenses
have been added to the license server or if license parameters have changed.
See Also: Kepware Edge License Server User Manual

Using Edge Admin:
./edge_admin manage-licensing --force-recheck

Using the Configuration API:

Endpoint: (PUT)
https://<hostname_or_ip>:<port>/config/v1/project/services/ForceLicenseCheck

www. ptc.com

16

https://www.ptc.com/en/support/refdoc/ThingWorx_Kepware_Edge/1_10/tke_licensing_server

Kepware Edge

Command Line Interface — edge_admin
The edge_admin Command Line Interface (CLI) application is used to manage Configuration API settings and cer-
tificates for the server from the command line. The documentation for the edge_admin CLI may be obtained using
the --help option. The following areas of functionality can be accessed through the command line.

Certificates

l Trust Store: Import / Delete / List / Trust / Reject certificates for various interfaces.
l Instance Certificate: Import / Export / Reissue instance certificates for various interfaces.
l Configuration API Settings: Enable / Disable the Configuration API and manage the ports it listens on.

The kepedge user account, a member of the kepedge group, must be used when interacting with the edge_admin
command line interface (CLI). The edge_admin can be found at the installation location and run from the command
line.

Examples

Obtain general help information and list the areas of the product that can be managed using the CLI:
./edge_admin --help

View commands related to managing the configuration API:
./edge_admin manage-cfgapi --help

View commands related to managing the certificates:
./edge_admin manage-certificate --help

View commands related to managing the trust store:
./edge_admin manage-truststore --help

To import an OPC UA certificate into the trust store:
./edge_admin manage-truststore -i MyCertificateName.der uaserver

See Also:
OPC UA Certificate Management
ThingWorx Native Interface Certificate Management

www. ptc.com

17

Kepware Edge

Getting Started
Configuration of Kepware Edge is performed using the Kepware+ SaaS Configuration Management user interface,
the Configuration API accessed via a REST client application / tool (not included), and the edge_admin command
line interface tool. The Kepware+ SaaS Configuration Management provides a user interface to modify project set-
tings, access the Event Log and Audit log, and other administrative features from a single portal. The Configuration
API is used to modify all project settings and most administrative settings. The edge_admin is used to manage cer-
tificates and configure the Configuration API administrative settings.

 Additional help for the edge_admin tool may be found by running the tool with the ‘--help’ option:
$./edge_admin --help
Additional help for the Configuration API may be accessed by a browser at the following URL:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/doc
Tip: The default port numbers are below.
Note: This version includes support for JSON-formatted documentation.
The initial API login credentials use the Administrator user name and password configured during installation.

For best security, a new group and user should be created via the Configuration API with only the appropriate per-
missions enabled. This user and group are solely within the context of Kepware Edge; they are not associated with
the user and group found in the container’s operating environment.

Ports:

l Configuration API HTTPS interface (Enabled): 57513
l Configuration API HTTP interface (Disabled by default): 57413
l OPC UA interface (Enabled by default): 49330

REST Configuration API Server Settings

l Endpoint: https://<hostname_or_ip>:<port>/config/
l Port: 57513 for HTTPS (57413 for HTTP)
l Authentication: Username and password of the Administrator account created during installation

A password must be set for the Kepware Edge Administrator when the container is run.

The Administrator user account password cannot be reset, but additional administrative users can be added to
the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

Administrator passwords must be at least 14 characters and no more than 512 characters. Passwords should be
at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special characters.
Choose a strong unique password that avoids well-known, easily guessed, or common passwords. Passwords
greater than 512 characters will be truncated.

Setting up a Project
During container deployment, there is an option to load a sample project by setting an environment variable USE_
SAMPLE_PROJECT to the value of TRUE. If that option was not chosen, the default project file is blank. To con-
figure a project, use the API commands in this section to create new channels, devices, and tags. If a baseline pro-
ject is helpful, re-deploy the container image and ensure that the environmental variable is used:
Note: The sample project is located at /opt/kepedge/v1/examples/simdemo.lpf in the containers file system.

Project Load Example
Load the project by performing a PUT command from a REST client to invoke request on the ProjectLoad endpoint.
The name of the project file is included in the body of the request. Use basic authentication for the request. The
response should include the message “Accepted” to indicate the project has been loaded.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:
{
 "common.ALLTYPES_NAME": "ProjectLoad",

www. ptc.com

18

Kepware Edge

 "servermain.PROJECT_FILENAME":"simdemo.lpf"
}

Authentication:
Basic Authentication with a username of administrator and the password created during installation.

Do not try to load a JSON project file generated from a server other than Kepware Edge as unsupported features
in the project file may prevent the project from loading.

Configuration API Service — Documentation Endpoint
The documentation endpoint can be used to retrieve information about the various endpoints, including:

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.

Supported Actions

HTTP(S) Verb Action
GET Retrieves the current server properties

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/doc
Accessing the documentation endpoint URL via a browser prompts for authentication. User credentials must be

used to access the documentation.

Configuration API Service — Endpoint Mapping
The Configuration API allows uses the following endpoint mapping scheme:

Documentation Endpoints
/config
/config/{version}/doc
/config/{version}/doc/drivers/{driver_name}/channels
/config/{version}/doc/drivers/{driver_name}/devices
/config/{version}/doc/drivers/{driver_name}/models
/config/{version}/doc/drivers

Tip: The /config/{version}/doc endpoint provides a list of all endpoints for configuration objects and the doc-
umentation endpoints for the specific object. This can be used to find definitions for all objects in the API.

Project Connectivity Elements
/config/{version}/project
/config/{version}/project/aliases
/config/{version}/project/aliases/{alias_name}
/config/{version}/project/channels
/config/{version}/project/channels/{channel_name}
/config/{version}/project/channels/{channel_name}/devices
/config/{version}/project/channels/{channel_name}/devices/{device_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tags/{tag_name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/tags/{tag_name}

www. ptc.com

19

Kepware Edge

/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags
/config/{version}/project/channels/{channel_name}/devices/{device_name}/tag_groups/{group_
name}/.../tag_groups/{group_name}/tags/{tag_name}

Server Administration Endpoints
/config/{version}/admin
/config/{version}/admin/server_usergroups
/config/{version}/admin/server_users
/config/{version}/admin/ua_endpoints
/config/{version}/admin/config_api_settings
/config/{version}/admin/config_api_settings/configapi/bearer_auth_settings

Log Endpoints
/config/{version}/log
/config/{version}/event_log
/config/{version}/transaction_log
/config/{version}/audit_log

Health Status Endpoint
/config/{version}/status

About Endpoint
/config/{version}/about

Plug-in Endpoints
Plug-ins are considered project extensions and are managed under the Project endpoint:
/config/{version}/project/{namespace}
/config/{version}/project/{namespace}/{collection}
/config/{version}/project/{namespace}/{collection}/{object_name}

Configuration API Service — Health Status Endpoint
The health status endpoint is used to retrieve information about the Configuration API REST service status. The
two values returned from a successful Health Status check are "Name" and "Healthy". Name represents the name
of the server being checked and Healthy represents if the service is running or not. The Configuration API REST
Service is "healthy" if the value returned is true. If the Configuration API service is unhealthy, no response is
returned.

l Supported properties of the endpoint
l Child nodes of the endpoint
l Property meta data (default values, state, data ranges, etc.)
l Parameters that can be used

Note: Documentation served from the landing page is currently only available in JSON encoding.
 Documentation served from the landing page is HTML-encoded by default. To obtain JSON-encoded doc-

umentation, include an “Accept” request header with “application/json”.

Supported Actions

HTTP(S) Verb Action
GET Retrieves the status of the Config API REST Service

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/status
Accessing the status endpoint URL requires no authentication. Passing in credentials will have the same effect

as its unauthenticated use.

www. ptc.com

20

Kepware Edge

Response Body:
[

{
 “Name”: “ConfigAPI REST service”,
 “Healthy”: true
 }
]

Enabling Interfaces
For security reasons, only the HTTPS Configuration API endpoint and a secured OPC UA endpoint are enabled by
default. The ThingWorx Native Interface and MQTT Agent are disabled by default. Interfaces are enabled or dis-
abled using the Configuration API.

Performing a GET on the project endpoint returns a unique project ID necessary to perform a PUT successfully
without using the “FORCE_UPDATE” override.

See Also:
Connecting with an OPC UA Client
Configuring the IoT Gateway
Configuring the ThingWorx Native Interface

IoT Gateway — MQTT
Overview
The "Internet of Things" (IoT) Gateway is a built-in feature within Kepware Edge that allows system and device tags
to be published to third-party endpoints through industry standard IP-based protocols. When the value for a con-
figured tag changes or when a publish rate is met, an update is sent to the corresponding third-party endpoint with
a configurable payload of tag ID, value, quality, and timestamp in a standard JSON format.

The IoT Gateway within Kepware Edge offers the following features:

l Ability to publish data consisting of a name, value, quality, and timestamp from any data source in the
server (e.g. drivers, plug-ins, or system tags)

l Standard human readable JSON data format with advanced format customization options
l Support for publishing via MQTT (Message Queue Telemetry Transport) versions 3.1 and 3.1.1
l Support for MQTT subscriptions for the purpose of accepting write operations
l Configurable data collection rate, as frequent as 10 milliseconds up to once per 27.77 hours (99999990 mil-

liseconds)
l Configurable data publish rate, as frequent as 10 milliseconds up to once per 27.77 hours (99999990 mil-

liseconds)
l Support for authentication and TLS / SSL encryption with or without client-side certificates
l Support for user-level access based on the User Manager and Security Policies Plug-In
l Configurable payload information for integration with different third-party endpoints
l In-memory data buffering of up to 100,000 data updates buffered per agent

What is MQTT?
MQTT stands for MQ Telemetry Transport. It is a publish / subscribe, extremely simple, and lightweight messaging
protocol designed for constrained devices and low-bandwidth, high-latency, or unreliable networks. The design
principles are to minimize network bandwidth and device resource requirements whilst also attempting to ensure
reliability and some degree of assurance of delivery. These principles also turn out to make the protocol ideal of the
emerging “machine-to-machine” (M2M) or “Internet of Things” world of connected devices and for mobile applic-
ations where bandwidth and battery power are at a premium (source: www.mqtt.org).

See Also:
Configuring the IoT Gateway

www. ptc.com

21

http://www.mqtt.org/

Kepware Edge

Configuring the IoT Gateway
The IoT Gateway allows information to be conveyed to an MQTT agent. The section below describes how to con-
figure the IoT Gateway.

MQTT Examples

Create MQTT Agent

Endpoint: (POST)
https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients

Body:
{
 "common.ALLTYPES_NAME": "NewMqttClient",
 "common.ALLTYPES_DESCRIPTION": "",
 "iot_gateway.AGENTTYPES_TYPE": "MQTT Client",
 "iot_gateway.AGENTTYPES_ENABLED": true
}

View MQTT Agents

Endpoint: (GET)
https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients

Create MQTT Agent Tag

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_cli-
ents/NewMqttClient/iot_items

Body:
{
 "common.ALLTYPES_NAME": "Simulator_Word1",
 "iot_gateway.IOT_ITEM_SERVER_TAG": "Simulator.SimulatorDevice.Registers.Word1",
 "iot_gateway.IOT_ITEM_ENABLED": true
}

View MQTT Agent Tags

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_cli-
ents/NewMqttClient/iot_items

Update MQTT Agent

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients/NewMqttClient

Body:
{
 "project_id": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "NewMqttClient_updated",
 "common.ALLTYPES_DESCRIPTION": "Update test"
}

Delete MQTT Agent

Endpoint (DEL):

www. ptc.com

22

Kepware Edge

https://<hostname_or_ip>:<port>/config/v1/project/_iot_gateway/mqtt_clients/NewMqttClient_
updated

Configuring Self-Signed Certificates for MQTT Broker Connection for MQTT Agent

The IoT Gateway supports self-signed certificates with the MQTT agent. These agents use the Java KeyStore to
manage the MQTT broker / server certificates to validate during connection establishment. Use the commands
below to import, list, or delete a certificate from the KeyStore.

These instructions assume the Java keytool is installed.

The default Java cacerts truststore password is “changeit”

Import certificate into the java store
sudo keytool -import -trustcacerts -keystore /usr/lib/jvm/<java_ver-
sion>/lib/security/cacerts -alias <alias> -file <certificate>

List the contents of the certificate
keytool -list -keystore /usr/lib/jvm/<java_version>/lib/security/cacerts -alias <alias>

Delete the certificate
sudo keytool -delete -keystore /usr/lib/jvm/<java_version>/lib/security/cacerets -alias
<alias>

The location of the Java Key Store used in the above commands may vary. Use the location appropriate for the
local Java installation.

For more information about working with certificates using the Java keytool, consult the documentation found on
the Oracle Java website.

Interfaces and Connectivity
This communications server simultaneously supports the client / server technologies listed below.

Server - a software application designed to bridge the communication between a device, controller, or data source
with a client application. Servers can only respond to requests made by a client.

Client - a software program that is used to contact and obtain data from a server (either on the same computer or
on another computer). A client makes a request and the server fulfills the request. An example of a client would be
an e-mail program connecting to a mail server or an Internet browser client connecting to a web server.

Human Machine Interface (HMI) - a software application (typically a Graphical User Interface or GUI) that
presents information to the operator about the state of a process and to accept and implement the operator control
instructions. It may also interpret the plant information and guide the interaction of the operator with the system.

Man Machine Interface (MMI) - a software application (typically a Graphical User Interface or GUI) that presents
information to the operator about the state of a process and to accept and implement the operator control instruc-
tions. It may also interpret the plant information and guide the interaction of the operator with the system.

For more information on a specific interface, select a link from the list below.

OPC UA Interface
IoT Gateway — MQTT Interface

OPC UA Interface
Supported Version
1.02 optimized binary TCP

Overview

www. ptc.com

23

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Kepware Edge

OPC Unified Architecture (UA) is an open standard created by the OPC Foundation with help from dozens of mem-
ber organizations. It provides an additional way to share factory floor data to business systems (from shop floor to
top floor). UA also offers a secure method for remote client-to-server connectivity without depending on Microsoft
DCOM. It has the ability to connect securely through firewalls and over VPN connections. This implementation of
the UA server supports optimized binary TCP and the DA data model.
OPC UA Profiles
OPC UA is a multi-part specification that defines a number of services and information models referred to as fea-
tures. Features are grouped into profiles, which are then used to describe the functionality supported by a UA
server or client.
For additional information about profiles, refer to the OPC Foundation website.

Fully Supported OPC UA Profiles

l Standard UA Server Profile
l Core Server Facet
l Data Access Server Facet
l SecurityPolicy - Basic128Rsa15 (Deprecated)
l SecurityPolicy - Basic256 (Deprecated)
l SecurityPolicy - Basic256Sha256
l SecurityPolicy - None (Insecure)
l UA-TCP UA-SC UA Binary

CAUTION: Security policies Basic128Rsa15 and Basic256 have been deprecated by the OPC Foundation as of
OPC UA specification version 1.04. The encryption provided by these policies is considered less secure and usage
should be limited to providing backward compatibility.

Partially Supported OPC UA Profiles

l Base Server Behavior Facet

Note: This profile does not support the Security Administrator – XML Schema.

OPC UA Certificate Management
UA servers require a certificate to establish a trusted connection with each UA client. For the server to accept
secure connections from a client, the client's certificate must be imported into the trusted certificate store used by
the OPC UA server interface. Management of the UA certificates can be done either using the edge_admin CLI
application or by saving the certificates to the configuration data folder.

Using the edge_admin CLI

To import an OPC UA certificate into the trust store:
./edge_admin manage-truststore -i MyCertificateName.der uaserver

To view the UA server trust store and the thumbprints of the certificates:
./edge_admin manage-truststore --list uaserver

Using the Volume Mapped .config Data Folder

UA certificates can also be managed directly through the mounted .config data folder. Certificates for the UA server
to use are maintained in the mounted volume /UA/Server.

Trusted certificates are located in the following directory:
UA/Server/cert

Rejected certificates are located in the following directory:
/UA/Server/RejectedCertificates

To trust a certificate, copy the client instance certificate file into the trusted certificates directory. If a rejected cer-
tificate needs to be trusted, move the client instance certificate in the rejected certificate directory to the trusted cer-
tificates directory.

www. ptc.com

24

https://profiles.opcfoundation.org/category/57

Kepware Edge

Note: The certificate files need to have read access by the installed kepedge user account for the server applic-
ation to access the certificate for validation.

Configuring the ThingWorx Native Interface
To configure the ThingWorx Native Interface connection, collect the following information from the ThingWorx Plat-
form instance to connect:

l HOSTNAME: Hostname or IP of machine running ThingWorx
l PORT: Port configured to run ThingWorx, typically port 80 for HTTP and 443 for HTTPS
l APPKEY: Application key configured in ThingWorx
l THING_NAME: Name of the Industrial Connection defined in the platform.

Tip: If a name that does not yet exist on the platform is specified, an ephemeral thing will be created. To
complete the connection, navigate to the new Thing in the platform and save.

For a list of ThingWorx interface definitions and enumerations, access the following endpoints with the REST client:

Project definitions:

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project
Tip: Enabling the ThingWorx Native Interface and configuring the connection settings can be done at the same

time.

Enable ThingWorx Native Interface

Tip: This is already enabled if the instructions in the Quick Start Guide have been followed.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/

Body:
{
 "project_id": <project_ID_from_GET>,
 "thingworxinterface.ENABLED": true
}

Configure ThingWorx Native Test Interface Connection Example

Note: This is a testing configuration and the use of certificates and other security measures are suggested for
production systems.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project

Body:
{
 "project_id": <project_ID_from_GET>,
 "thingworxinterface.ENABLED": true,
 "thingworxinterface.HOSTNAME": "<hostname or IP>",
 "thingworxinterface.PORT": <Port Number>,
 "thingworxinterface.RESOURCE": "/ThingWorx/WS",
 "thingworxinterface.APPKEY": "<App Key>",
 "thingworxinterface.ALLOW_SELF_SIGNED_CERTIFICATE": false,
 "thingworxinterface.TRUST_ALL_CERTIFICATES": true,
 "thingworxinterface.DISABLE_ENCRYPTION": true,
 "thingworxinterface.THING_NAME": "<ThingName>"
}

www. ptc.com

25

Kepware Edge

ThingWorx Native Interface Certificate Management
ThingWorx Native Interface requires a certificate to establish a trusted connection between Kepware Edge and
ThingWorx Platform. To create a secure connection, the ThingWorx Platform server certificate or the CA root cer-
tificate must be imported into the trusted certificate store. Management of these certificates can be accomplished
using the edge_admin CLI application.

To import a the ThingWorx Platform server certificate or the CA root certificate into the trust store:

./edge_admin manage-truststore -i MyCertificateName.der thingworx

To view the ThingWorx Native Interface trust store and the thumbprints of the certificates:

./edge_admin manage-truststore –list thingworx

Components and Concepts
For more information on a specific server component, select a link from the list below.

What is a Channel?
What is a Device?
What is a Tag?
What is a Tag Group?
What is the Alias Map?
What is the Event Log?

What is a Channel?
A channel represents a communication medium from the server to one or more external devices. A channel is used
to represent an Ethernet-based path to target equipment.

Before adding devices to a project, users must define the channel to be used when communicating with devices. A
channel and a device driver are closely tied. After creating a channel, only devices that the selected driver supports
can be added to this channel.

Creating a Channel
Channels are defined by a set of properties based on the communication methods. Channels are created through
the Configuration API service.

Channel names must be unique among all channels and devices defined in the project. For information on
reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.

Removing a Channel
To remove a channel from the project, use the Configuration API Service.

Displaying Channel Properties
To review the channel properties of a specific channel via the Configuration API, access the documentation chan-
nel endpoint.
See Also: Channel Properties — General

What is a Device?
Devices represent the PLCs, controllers, or other hardware with which the server communicates. The device driver
that the channel is using restricts device selection.

Adding a Device
Devices are defined by a set of properties based on the protocol, make, and model. Devices are created through
the Configuration API Service.

www. ptc.com

26

Channel_Properties_General.htm

Kepware Edge

Device names are user-defined and should be logical for the device. This is the browser branch name used in links
to access the device's assigned tags.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Device
To remove a device from the project, use the Configuration API Service.

Displaying Device Properties
To review the channel properties of a specific channel via the Configuration API, access the documentation chan-
nel endpoint.
 For more information, refer to Device Properties.

What is a Tag?
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify device
data addresses. User-defined Static tags are created and stored in the server. Static tags function as pointers to
device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Adding a Tag
Tags are defined by a set of properties based on the data. Tags are defined through the Configuration API Service
or through the Kepware Manager+ user interface.

Tag names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag
To remove a tag from the project; use the Configuration API Service.

Displaying Tag Properties
To review the tag properties of a specific channel via the Configuration API, access the documentation channel
endpoint.

Tag Properties — General
A tag represents addresses within the device with which the server communicates. The server allows both
Dynamic tags and user-defined Static tags. Dynamic tags are created and stored in the client and specify device
data addresses. User-defined Static tags are created and stored in the server. Static tags function as pointers to
device data addresses and can be browsed from clients that support tag browsing.

For more information, refer to Dynamic Tags and Static User-Defined Tags.

Name: Enter a string to represent this tag. The tag name can be up to 256 characters in length. For information on
reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.
Tip: If the application is best suited for using blocks of tags with the same names, use tag groups to separate the

tags. For more information, refer to Tag Group Properties.

Description: Add context to the tag. A string of up to 255 characters can be entered for the description.

Address: Enter the target tag's driver address. The address's format is based on the driver protocol.

Data Type: Specify the format of this tag's data as it is found in the physical device. In most cases, this is also the
format of the data as it returned to the client. The data type setting is an important part of how a communication
driver reads and writes data to a device. For many drivers, the data type of a particular piece of data is rigidly fixed
and the driver knows what format needs to be used when reading the device's data. In some cases, however, the
interpretation of device data is largely in the user's hands. An example would be a device that uses 16-bit data
registers. Normally this would indicate that the data is either a Short or Word. Many register-based devices also
support values that span two registers. In these cases, the double register values could be a Long, DWord or 32-bit

www. ptc.com

27

Device_Properties_General.htm
static-tags.htm
static-tags.htm

Kepware Edge

Float. When the driver being used supports this level of flexibility, users must tell it how to read data for this tag. By
selecting the appropriate data type, the driver is being directed to request one or more registers.

l Default - Uses the driver default data type
l Boolean - Binary value of true or false
l Char - Signed 8-bit integer data
l Byte - Unsigned 8-bit integer data
l Short - Signed 16-bit integer data
l Word - Unsigned 16-bit integer data
l Long - Signed 32-bit integer data
l DWord - Unsigned 32-bit integer data
l LLong - Signed 64-bit integer data
l QWord - Unsigned 64-bit integer data
l Float - 32-bit real value IEEE-754 standard definition
l Double - 64-bit real value IEEE-754 standard definition
l String - Null-terminated Unicode string
l BCD - Two byte-packed BCD value range is 0-9999
l LBCD - Four byte-packed BCD value range is 0-99999999
l Date - 8-byte floating point number

Client Access: Specify whether the tag is Read Only or Read / Write. By selecting Read Only, users can prevent
client applications from changing the data contained in this tag. By selecting Read / Write, users allow client applic-
ations to change this tag's value as needed. The Client Access selection also affects how the tag appears in the
browse space of an OPC UA client. Many client applications allow filtering tags based on attributes. Changing the
access method of this tag may change how and when the tag appears in the browse space of the client.

Scan Rate: Specify the update interval for this tag when using the Scan Mode option of Respect Tag-Specified
Scan Rate within Device Properties. The server specifies an update rate on a tag per tag basis. Using the scan
rate, users can tailor the bandwidth requirements of the server to suit the needs of the application. For example,
data that changes infrequently does not need to be scanned very often. Using the scan rate this tag can be forced
to read at a slower rate reducing the demand on the communications channel. The valid range is 10 to 99999990
milliseconds (ms), with a 10 ms increment. The default is 100 milliseconds.

With the server's online full-time operation, these properties can be changed at any time. Changes made to tag
properties take effect immediately; however, client applications that have already connected to this tag are not
affected until they release and attempt to reacquire it. Utilize the User Manager to restrict access rights to server
features and prevent operators from changing the properties.

System Tags
System tags provide general error feedback to client applications about the server and the associated driver, allow
operational control when a device is actively collecting data, and allow a channel or device's standard properties to
be changed by a client application when needed.

The number of system tags available at both the channel level and device level depends on the nature of the driver
being used. In addition, application-level system tags allow client applications to monitor the server's status. Sys-
tem tags can also be grouped according to their purpose as both status and control or property manipulation.
Descriptions are as follows:

l Status Tags Status tags are read-only tags that provide data on server operation.
l Parameter Control Tags: Parameter control tags can be used to modify the server application's oper-

ational characteristics. This provides a great deal of flexibility in the client applications. By using the prop-
erty control tags, users can implement redundancy by switching communications links or changing the
device ID of a target device. Users can also provide access to the tags through special supervisory screens
that allow a plant engineer to make changes to the communication parameters of the server if needed.

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has the appro-
priate permissions.

The tables below include descriptions of the following:

www. ptc.com

28

Kepware Edge

Application-Level System Tags
Channel-Level System Tags for Ethernet Drivers
Device-Level System Tags for both Serial and Ethernet Drivers

Application-Level System Tags
Syntax Example: _System._ActiveTagCount

Tag Class Description
_ActiveTagCount Status Tag The _ActiveTagCount tag indicates the number of tags that are

currently active in the server.
This is a read-only tag.

_ClientCount Status Tag The _ClientCount tag indicates the number of clients that are cur-
rently connected to the server.
This is a read-only tag.

_Date Status Tag The _Date tag indicates the current date of the system that the
server is running on. The format of this string is defined by the
operating system date / time settings.
This is a read-only tag.

_DateTime Status Tag The _DateTime tag indicates the GMT date and time of the sys-
tem that the server is running on. The format of the string is
'2004-05-21T20:39:07.000'.
This is a read-only tag.

_DateTimeLocal Status Tag The _DateTimeLocal tag indicates the localized date and time of
the system that the server is running on. The format of the string
is '2004-05-21T16:39:07.000'.
This is a read-only tag.

_Date_Day Status Tag The _Date_Day tag indicates the current day of the month of the
system on which the server is running.
This is a read-only tag.

_Date_DayOfWeek Status Tag The _Date_DayOfWeek tag indicates the current day of the
week of the system on which the server is running. The format of
the string is a number from 0 (Sunday) to 6 (Saturday).
This is a read-only tag.

_Date_Month Status Tag The _Date_Month tag indicates the current month of the system
on which the server is running. The format of the string is a num-
ber (such as "9" instead of "September").
This is a read-only tag.

_Date_Year2 Status Tag The _Date_Year2 tag indicates the last two digits of the current
year of the system on which the server is running.
This is a read-only tag.

_Date_Year4 Status Tag The _Date_Year4 tag indicates the current year of the system on
which the server is running.
This is a read-only tag.

_ExpiredFeatures Status Tag The _ExpiredFeatures tag provides a list of all server features
whose time-limited usage has expired. These features are no
longer operational.
This is a read-only tag.

_FullProjectName Status Tag The _FullProjectName tag indicates the fully qualified path and
file name to the currently loaded project.
This is a read-only tag.

_IsDemo Status Tag The _IsDemo tag is no longer available as the runtime does not
enter Time Limited mode in version 1.3 or higher. See the _
TimeLimitedFeatures, _LicensedFeatures, and _
ExpiredFeatures tags to monitor the status of server features.

www. ptc.com

29

Kepware Edge

Tag Class Description
_License_Bor-
rowExpirationDate

Status Tag The _License_BorrowExpirationDate tag shows the date when
licenses obtained from the License Server will need to be
renewed. Licenses not able to renew by this date will cease to be
available on the system.
This is a read-only tag.

License
FeaturesInGrace

Status Tag The _License_FeaturesInGrace tag shows licensed features
which are past their expiration date. The licenses will soon
expire permanently.
This is a read-only tag.

License
LastRequestState

Status Tag The _License_LastRequestState tag shows the status of the last
license request made to the License Server. Possible states
include "Failure", "NoChanges", and "Success".
This is a read-only tag.

_License_LastServer-
Connection

Status Tag The _License_LastServerConnection tag shows the result of the
last connection attempt the License Server. This is a Boolean
tag. 1 (True) indicates a successful connection and 0 (False)
indicates a failed connection.
This is a read-only tag.

_LicensedFeatures Status Tag The _LicensedFeatures tag provides a list of all server features
in use that have a valid license. If the license expires, features
function through a grace period to allow users to get licensing
into compliance.
This is a read-only tag.

_ProductName Status Tag The _ProductName tag indicates the name of the underlying
communication server.
This is a read-only tag.

_ProductVersion Status Tag The _ProductVersion tag indicates the version of the underlying
communication server.
This is a read-only tag.

_ProjectName Status Tag The _ProjectName tag indicates the currently loaded project file
name and does not include path information.
This is a read-only tag.

_ProjectTitle Status Tag The _ProjectTitle tag is a String tag that indicates the title of the
project that is currently loaded.
This is a read-only tag.

_Time Status Tag The _Time tag indicates the current time of the system that the
server is running on. The format of this string is defined by the
operating system date / time settings.
This is a read-only tag.

_Time_Hour Status Tag The _Time_Hour tag indicates the current hour of the system on
which the server is running.
This is a read-only tag.

_Time_Hour24 Status Tag The _Time_Hour24 tag indicates the current hour of the system
on which the server is running in a 24-hour format.
This is a read-only tag.

_Time_Minute Status Tag The _Time_Minute tag indicates the current minute of the sys-
tem on which the server is running.
This is a read-only tag.

_Time_PM Status Tag The _Time_PM tag indicates the current AM/PM status of the
system on which the server is running. This is a Boolean tag: 0
(False) indicates AM, and 1 (True) indicates PM.
This is a read-only tag.

www. ptc.com

30

Kepware Edge

Tag Class Description
_Time_Second Status Tag The _Time_Second tag indicates the current second of the sys-

tem on which the server is running.
This is a read-only tag.

_TimeLim-
itedFeatures

Status Tag This is a read-only tag.
The _TimeLimitedFeatures tag provides a list of all server fea-
tures that are in unlicensed demo. When the time remaining
expires, the feature ceases operation.
This is a read-only tag.

_TotalTagCount Status Tag The _TotalTagCount tag indicates the total number of tags that
are currently being accessed. These tags can be active or inact-
ive.
Note: This count does not represent the number of tags con-

figured in the project.
This is a read-only tag.

Channel-Level System Tags for Ethernet Drivers
Syntax Example: <Channel name>._System._NetworkAdapter

Tag Class Description
_AvailableNetworkAdapters Status Tag The _AvailableNetworkAdapters tag lists the available

NICs and includes both unique NIC cards and NICs that
have multiple IPs assigned to them. This tag also displays
any WAN connections that are active, such as a dial-up
connection. This tag is provided as a string tag and can be
used to determine the network adapters available for use
on this PC. The string returned contains all of the NIC
names and their IP assignments. A semicolon separates
each unique NIC to allow the names to be parsed within an
OPC application. For a serial driver, this tag is only used if
Ethernet Encapsulation is selected.
This is a read-only tag.

_Description Status Tag The _Description tag indicates the current user-defined
text description for the channel it is referencing.
This is a read-only tag.

_EnableDiagnostics Parameter Control
Tag

The _EnableDiagnostics tag allows the diagnostic system
of the driver to be enabled and disabled. The diagnostic
system places a little additional burden on the driver while
enabled. As such the server allows diagnostics to be
enabled or disabled to improve the driver's performance.
When disabled, the Diagnostics tags will not be available.
For more information, refer to Statistics Tags.
This is a read / write tag.

_FloatHandlingType Parameter Control
Tag

The _FloatHandlingType tag allows the current channel-
level float handling to be changed. It exists in the channel-
level _System folder. For more information, refer to Chan-
nel Properties — Advanced.
This is a read / write tag.

_InterDeviceDelayMS Parameter Control
Tag

The _InterDeviceDelayMS tag specifies the amount of time
that the channel delays sending a request to the next
device after the data has been received from the current
device on the same channel. The valid range is 0 to 60000
milliseconds. The default setting is 0.

www. ptc.com

31

Channel_Properties_Advanced.htm
Channel_Properties_Advanced.htm

Kepware Edge

Tag Class Description
Note: This tag is only available on channels that use pro-

tocols that utilize the Inter-Device Delay.
This tag is a read / write tag.

_NetworkAdapter Parameter Control
Tag

The _NetworkAdapter tag allows the current NIC adapter
in use by the driver to be changed at will. As a string tag,
the name of the newly desired NIC adapter must be written
to this tag in string format. The string written must match
the exact description to take effect. NIC names can be
obtained from the ableNetworkAdapters tag listed above.
For a serial driver, this tag is only used if Ethernet Encap-
sulation is selected.
Note: When changing the NIC selection, the driver is

forced to break all current device connections and recon-
nect.
This is a read / write tag.

_WriteOp-
timizationDutyCycle

Parameter Control
Tag

The _WriteOptimizationDutyCycle tag allows the duty
cycle of the write to read ratio to be changed at will. The
duty cycle controls how many writes the driver attempts for
each read it performs. The _WriteOptimizationDutyCycle is
defined as an unsigned long value. The valid range is 1 to
10 write per read. For more information, refer to Channel
Properties — Write Optimizations.
This is a read / write tag.

Device-Level System Tags for both Serial and Ethernet Drivers
Syntax Example: <Channel Name>.<Device Name>._System._Error

Tag Class Description
_AutoCreateTagDatabase Parameter Control

Tag
The _AutoCreateTagDatabase tag is a Boolean tag that is
used to initiate the automatic tag database functions of this
driver for the device to which this tag is attached. When
this tag is set True, the communications driver attempts to
automatically generate a tag database for this device. This
tag does not appear for drivers that do not support Auto-
matic Tag Database Generation.
This is a read / write tag.

_AutoDemoted Status Tag The _AutoDemoted tag is a Boolean tag that returns the
current auto-demoted state of the device. When False, the
device is not demoted and is being scanned by the driver.
When set True, the device is in demoted and not being
scanned by the driver.
This is a read-only tag.

_AutoDe-
motionDiscardWrites

Parameter Control
Tag

The _AutoDemotionDiscardWrites tag is a Boolean tag
that specifies whether or not write requests should be dis-
carded during the demotion period. When this tag is set to
False, all writes requests are performed regardless of the _
AutoDemoted state. When this tag is set to True, all writes
are discarded during the demotion period.
This is a read / write tag.

_AutoDemotionEnabled Parameter Control
Tag

The _AutoDemotionEnabled tag is a Boolean tag that
allows the device to be automatically demoted for a spe-
cific time period when the device is unresponsive. When
this tag is set False, the device is never demoted. When
this tag is set True, the device is demoted when the _
AutoDemotedFailureCount has been reached.

www. ptc.com

32

Channel_Properties_Write_Optimizations.htm
Channel_Properties_Write_Optimizations.htm

Kepware Edge

Tag Class Description
This is a read / write tag.

_AutoDemotedFailureCount Parameter Control
Tag

The _AutoDemotedFailureCount tag specifies how many
successive failures it takes to demote a device. The _
AutoDemotedFailureCount is defined as a long data type.
The valid range is 1 to 30. This tag can only be written to if
_AutoDemotionEnabled is set to True.
This is a read / write tag.

_AutoDemotionIntervalMS Parameter Control
Tag

The _AutoDemotionIntervalMS tag specifics how long, in
milliseconds, a device is demoted before re-attempting to
communicate with the device. The _AutoDe-
motionIntervalMS is defined as a long data type. The valid
range is 100 to 3600000 milliseconds. This tag can only be
written to if _AutoDemotionEnabled is set to True.
This is a read / write tag.

_ConnectTimeout Parameter Control
Tag

The _ConnectTimeout tag allows the timeout associated
with making an IP connection to a device to be changed at
will. This tag is available when either a native Ethernet
driver is in use or a serial driver is in Ethernet Encap-
sulation mode. The _ConnectTimeout is defined as a Long
data type. The valid range is 1 to 30 seconds.
This is a read / write tag.

_DemandPoll Status / Control
Tag

The _DemandPoll tag issues a device read to all the active
client items associated with the device. This is the equi-
valent of a client performing an asynchronous device read
for those items. It takes priority over any scheduled reads
that are supposed to occur for items that are being actively
scanned.
The _DemandPoll tag becomes True (1) when written to. It
returns to False (0) when the final active tag signals that
the read requests have completed. Subsequent writes to
the _DemandPoll tag fails until the tag value returns to
False. The demand poll respects the read / write duty cycle
for the channel.
This is a read / write tag.

_Description Status Tag The _Description tag indicates the current user-defined
text description for the device it is referencing.
This is a read-only tag.

_DeviceId Parameter Control
Tag

The _DeviceId tag allows the ID of the device to be
changed at will. The data format of the _DeviceId depends
on the type of device. For most serial devices this tag is a
Long data type. For Ethernet drivers the _DeviceId is
formatted as a string tag, allowing the entry of an IP
address. In either case, writing a new device ID to this tag
causes the driver to change the target field device. This
only occurs if the device ID written to this tag is correctly
formatted and within the valid range for the given driver.
This is a read / write tag.

_Enabled Parameter Control
Tag

The _Enabled tag provides a very flexible means of con-
trolling the server application. In some cases, specifically
in modem applications, it can be convenient to disable all
devices except the device currently connected to the
modem. Additionally, using the _Enabled tag to allow the
application to turn a particular device off while the physical
device is being serviced can eliminate harmless but
unwanted communications errors in the Event Log.
This is a read / write tag.

www. ptc.com

33

Kepware Edge

Tag Class Description
Note: Write requests to device configuration system tags

like _Enabled require editing the Project Modification per-
missions of the Kepware User Group associated with the
client’s incoming connection protocol and chosen authen-
tication method. . OPC UA clients and other interfaces may
authenticate with custom user groups and modifications
should be made to those user groups as required.

_Error Status Tag The _Error tag is a Boolean tag that returns the current
error state of the device. When False, the device is oper-
ating properly and the timestamp is when the device last
entered this state. When True, the driver has detected an
error when communicating with this device, and the
timestamp is updated with the latest failed operation. A
device enters an error state if it has completed the cycle of
request timeouts and retries without a response.
When _Error is false, the timestamp of the tag can be used
to determine how long communications have been in a
good state. When _Error is true, the timestamp of the tag
can be used to determine when the last failed operation
was, and _SecondsInError can be used to determine the
overall length of the communications issues.
This is a read-only tag.

_FailedConnection Status Tag The _FailedConnection tag specifies that the connection
failed. It is only available to specific drivers. This is a read-
only tag.
Tip: The _FailedConnection system tag is supported by

the following drivers:

l Allen-Bradley ControlLogix Ethernet
_InterRequestDelay Parameter Control

Tag
The _InterRequestDelay tag allows the time interval
between device transactions to be changed at will. The _
InterRequestDelay is defined as a Long data type. The
valid range is 0 to 30000 milliseconds. This tag only
applies to drivers that support this feature.
This is a read / write tag.

_RequestAttempts Parameter Control
Tag

The _RequestAttempts tag allows the number of com-
munication attempts to be changed. The _RequestAt-
tempts is defined as a Long value. The valid range is 1 to
10 attempts. This tag applies to all drivers equally.
This is a read / write tag.

_RequestTimeout Parameter Control
Tag

The _RequestTimeout tag allows the timeout associated
with a data request to be changed at will. The _
RequestTimeout tag is defined as a Long value. The valid
range is 100 to 30000 milliseconds. This tag applies to all
drivers equally.
This is a read / write tag.

_NoError Status Tag The _NoError tag is a Boolean tag that returns the current
error state of the device. When True, the device is oper-
ating properly and the timestamp is when the device last
entered this state. When False, the driver has detected an
error when communicating with this device, and the
timestamp is updated with the latest failed operation. A
device enters an error state if it has completed the cycle of
request timeouts and retries without a response.
When _NoError is true, the timestamp of the tag can be
used to determine how long communications have been in

www. ptc.com

34

Kepware Edge

Tag Class Description
a good state. When _NoError is false, the timestamp of
the tag can be used to determine when the last failed oper-
ation was, and _SecondsInError can be used to determine
the overall length of the communications issues.
This is a read-only tag.

_ScanMode Status Tag The _ScanMode tag allows clients to dictate the method
used for updates. It is defined as a String value, and cor-
responds to the user-specified Scan Mode setting (located
in device properties). "Respect client specified scan rate"
has a value of "UseClientRate," "Request data no faster
than x" has a value of "UseFloorRate," and "Request all
data at x" has a value of "ForceAllToFloorRate." The
default setting is "Respect client specified scan rate."
This is a read-only tag.

_ScanRateMs Status Tag The _ScanRateMs tag corresponds to the _ScanMode tag,
and is used when the Scan Mode is set to Request Data
No Faster than Scan Rate or Request All Data at Scan
Rate. This tag is defined as a DWord tag. The default set-
ting is 1000 milliseconds.
This is a read-only tag.

_SecondsInError Status Tag The _SecondsInError tag is a DWord tag that displays the
number of seconds since the device entered an error state.
This tag displays 0 when the device is not in an error state.
This is a read-only tag.

_Simulated Parameter Control
Tag

The _Simulated tag is a Boolean tag that provides feed-
back about the simulation state of the current device.
When read as True, this device is in a simulation mode.
While in simulation mode, the server returns good data for
this device, but does not attempt to communicate with the
actual physical device. When tag is read as False, com-
munication with the physical device is active. Changing the
tag value allows clients to enable / disable simulated
mode.

This is a read / write tag.

The _System branch found under the DeviceName branch is always available. If referencing a system tag from a
DDE application given the above example and the DDE defaults, the link would appear as "<DDE service name>|_
ddedata!Channel1.Device1._System._Error".

See Also:
Property Tags
Statistics Tags

Property Tags
Property tags are used to provide read-only access to tag properties for client applications. To access a tag prop-
erty, append the property name to the fully qualified tag address that has been defined in the server's tag database.
For more information, refer to Tag Properties — General.

If the fully qualified tag address is "Channel1.Device1.Tag1," its description can be accessed by appending the
description property as "Channel1.Device1.Tag1._Description".

Supported Property Tag Names

www. ptc.com

35

Kepware Edge

Tag Name Description
_Name The _Name property tag indicates the current name for the tag it is referencing.

_Address The _Address property tag indicates the current address for the tag it is referencing.

_Description The _Description property tag indicates the current description for the tag it is ref-
erencing.

_RawDataType The _RawDataType property tag indicates the raw data type for the tag it is ref-
erencing.

_ScalingType The _ScalingType property tag indicates the scaling type (None, Linear or Square
Root) for the tag it is referencing.

_ScalingRawLow The _ScalingRawLow property tag indicates the raw low range for the tag it is ref-
erencing. If scaling is set to none this value contains the default value if scaling was
applied.

_ScalingRawHigh The _ScalingRawHigh property tag indicates the raw high range for the tag it is ref-
erencing. If scaling is set to none this value contains the default value if scaling was
applied.

_Scal-
ingScaledDataType

The _ScalingScaledDataType property tag indicates the scaled to data type for the
tag it is referencing. If scaling is set to none this value contains the default value if
scaling was applied.

_ScalingScaledLow The _ScalingScaledLow property tag indicates the scaled low range for the tag it is
referencing. If scaling is set to none this value contains the default value if scaling
was applied.

_ScalingScaledHigh The _ScalingScaledHigh property tag indicates the scaled high range for the tag it is
referencing. If scaling is set to none this value contains the default value if scaling
was applied.

_ScalingClampLow The _ScalingClampLow property tag indicates whether the scaled low value should
be clamped for the tag it is referencing. If scaling is set to none this value contains
the default value if scaling was applied.

_ScalingClampHigh The _ScalingClampHigh property tag indicates whether the scaled high value should
be clamped for the tag it is referencing. If scaling is set to none this value contains
the default value if scaling was applied.

_ScalingUnits The _ScalingUnits property tag indicates the scaling units for the tag it is referencing.
If scaling is set to none this value contains the default value if scaling was applied.

See Also:
Statistics Tags
System Tags

Statistics Tags
Statistics tags are used to provide feedback to client applications regarding the operation of the channel com-
munications in the server. Statistics tags are only available when diagnostics are enabled. For more information,
refer to Channel Diagnostics

Syntax Example: <Channel Name>._Statistics._FailedReads

Supported Statistics Tag Names
Tag Name Description
_SuccessfulReads The _SuccessfulReads tag contains a count of the number of reads this channel has com-

pleted successfully since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover.
This tag is read only.

_SuccessfulWrites The _SuccessfulWrites tag contains a count of the number of writes this channel has com-
pleted successfully since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as an unsigned 32-bit integer and will eventually
rollover. This tag is read only.

www. ptc.com

36

Kepware Edge

Tag Name Description
_FailedReads The _FailedReads tag contains a count of the number of reads this channel has failed to

complete since the start of the application or since the last time the _Reset tag was
invoked. This count is only incremented after the channel has failed the request based on
the configured timeout and retry count for the device. This tag is formatted as an unsigned
32-bit integer and will eventually rollover. This tag is read only.

_FailedWrites The _FailedWrites tag contains a count of the number of writes this channel has failed to
complete since the start of the application or since the last time the _Reset tag was
invoked. This count is only incremented after the channel has failed the request based on
the configured timeout and retry count for the device. This tag is formatted as unsigned
32-bit integer and will eventually rollover. This tag is read only.

_RxBytes* The _RxBytes tag contains a count of the number of bytes the channel has received from
connected devices since the start of the application or since the last time the _Reset tag
was invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover.
This tag is read only.

_TxBytes The _TxBytes tag contains a count of the number of bytes the channel has sent to con-
nected devices since the start of the application or since the last time the _Reset tag was
invoked. This tag is formatted as unsigned 32-bit integer and will eventually rollover. This
tag is read only.

_Reset The _Reset tag can be used to reset all diagnostic counters. The _Reset tag is formatted
as a Boolean tag. Writing a non-zero value to the _Reset tag will cause the diagnostic
counters to be reset. This tag is read / write.

_MaxPend-
ingReads

The _MaxPendingReads tag contains a count of the maximum number of pending read
requests for the channel since the start of the application (or the _Reset tag) was invoked.
This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_MaxPend-
ingWrites

The _MaxPendingWrites tag contains a count of the maximum number of pending write
requests for the channel since the start of the application (or the _Reset tag) was invoked.
This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_NextReadPriority

The _NextReadPriority is a channel-level system tag that reflects the priority level of the
next read in the channel's pending read queue. Possible values are -1: No pending reads.
0: The next read is a result of a schedule-level demand poll or explicit read from a client. 1
- n: The next read is a result of scheduled read. This tag is read only.

_PendingReads The _PendingReads tag contains a count of the current pending read requests for the
channel. This tag is formatted as an unsigned 32-bit integer. The tag is read only.

_PendingWrites The _PendingWrites tag contains a count of the current pending write requests for the
channel. This tag is formatted as an unsigned 32-bit integer. This tag is read only.

* This statistical item is not updated in simulation mode (See Device Properties).

The _Statistics branch (located beneath the channel branch) only appears when diagnostics are enabled for the
channel. To reference a Diagnostics tag from a DDE application, given the above example and the DDE defaults,
the link would appear as: "<DDE service name>|_ddedata!Channel1._Statistics._SuccessfulReads".

See Also:
System Tags
Property Tags

Dynamic Tags
Dynamic tag addressing is a second method of defining tags that allows users to define tags only in the client
application. As such, instead of creating a tag item in the client that addresses another tag item created in the
server, users only need to create tag items in the client that directly accesses the device driver's addresses. On cli-
ent connect, the server creates a virtual tag for that location and starts scanning for data automatically.

To specify an optional data type, append one of the following strings after the '@' symbol:

l BCD
l Boolean

www. ptc.com

37

Device_Properties_Operating_Mode.htm

Kepware Edge

l Byte
l Char
l Double
l DWord
l Float
l LBCD
l LLong
l Long
l QWord
l Short
l String
l Word

If the data type is omitted, the driver chooses a default data type based on the device and address being ref-
erenced. The default data types for all locations are documented in each individual driver's help documentation. If
the data type specified is not valid for the device location, the server rejects the tag and an error posts in the Event
Log.

Client Using Dynamic Addressing Example
Scan the 16-bit location "R0001" on the Simulator device. The following Dynamic tag examples assume that the
project created is part of the example.

1. Start the client application and connect to the server.

2. Using the Simulator Driver, create a channel and name it Channel1. Then, make a device and name it
Device1.

3. In the client application, define an item name as "Channel1.Device1.R0001@Short."

4. The client project automatically starts receiving data. The default data type for address R0001 in the Sim-
ulator device is Word. To override this, the @Short has been appended to select a data type of Short.

Note: When utilizing Dynamic tags in a client application, the use of the @[Data Type] modifier is not normally
required. Clients can specify the desired data type as part of the request when registering a link for a specific data
item. The data type specified by the Client is used if it is supported by the communications driver. The@[Data
Type] modifier can be useful when ensuring that a communications driver interprets a piece of data exactly as
needed.

Clients can also override the update rate on a per-tag basis by appending@[Update Rate].

For example, appending:
<DDE service name>|_ddedata!Device1.R0001@500 overrides just the update rate.
<DDE service name>|_ddedata!Device1.R0001@500,Short overrides both update rate and data type.

Tips:

1. The server creates a special Boolean tag for every device in a project that can be used by a client to determ-
ine whether a device is functioning properly. To use this tag, specify the item in the link as "Error." If the
device is communicating properly, the tag's value is zero; otherwise, it is one.

2. If the device address is used as the item of a link such that the address matches the name of a user-defined
tag in the server, the link references the address pointed to by the user-defined tag.

3. Static tags must be used to scale data in the server.

See Also:
Static Tags (User-Defined)
Designing a Project: Adding User-Defined Tags

Tag Properties — Scaling
This server supports tag Scaling, which allows raw data from the device to be scaled to an appropriate range for the
application.

www. ptc.com

38

static-tags.htm

Kepware Edge

Type: Specify the method of scaling raw values: Linear, Square Root, or None to disable. The formulas for scaling
types are shown below.

Type Formula for Scaled Value
Linear (((ScaledHigh - ScaledLow)/(RawHigh - RawLow))*(RawValue - RawLow)) + ScaledLow

Square
root

(Square root ((RawValue - RawLow)/(RawHigh - RawLow))*(ScaledHigh - ScaledLow)) +
ScaledLow

Raw Low: Specify the lower end of the range of data from the device. The valid range depends on the raw tag data
type. For example, if the raw value is Short, the valid range of the raw value would be from -32768 to 32767.

Raw High: Specify the upper end of the range of data from the device. The Raw High value must be greater than
the Raw Low value. The valid range depends on the raw tag data type.

Scaled Data Type: Specify the data type for the tag being scaled. The data type can be set to any valid OPC data
type, including a raw data type, such as Short, to an engineering value with a data type of Long. The default scaled
data type is Double.

Scaled Low: Specify the lower end of the range of valid resulting scaled data values. The valid range depends on
the tag data type.

Scaled High: Specify the upper end of the range of valid resulting scaled data values. The valid range depends on
the tag data type.

Clamp Low: Specify Yes to prevent resulting data from exceeding the lower end of the range specified. Specify No
to allow data to fall outside of the established range.

Clamp High: Specify Yes to prevent resulting data from exceeding the upper end of the range specified. Specify
No to allow data to fall outside of the established range.

Negate Value: Specify Yes to force the resulting value to be negated before being passed to the client. Specify No
to pass the value to the client unmodified.

A client can automatically configure the range of objects (such as user input objects or displays) using the Scal-
ing settings by accessing / changing the property tag values associated with the tag. Utilize the User Manager to
restrict access rights to server features to prevent any unauthorized operator from changing these properties.

What is a Tag Group?
This server allows tag groups to be added to the project. Tag groups are used to tailor the layout of OPC data into
logical groupings that fit the application's needs. Tag groups allow multiple sets of identical tags to be added under
the same device: this can be convenient when a single device handles a number of similar machine segments.

Adding a Tag Group
Tag groups are defined by the set of tags contained. Tag groups are defined through the Configuration
API Service.

Tag group names are user-defined and should be logical for reporting and data analysis.
For information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag

Group.

Removing a Tag Group
To remove a tag from the project; use the Configuration API Service.

Displaying Tag Group Properties
To review the tag group properties of a specific tag group via the Configuration API, access the documentation
channel endpoint.

www. ptc.com

39

Kepware Edge

Tag Group Properties
From a client standpoint, tag groups allow users to separate data into smaller tag lists, making finding specific tags
easier.

Tag groups can be added at any level from the device-level down, and multiple tag groups can be nested together
to fit the application's needs.

Note: With the server's online full-time operation, these properties can be changed at any time. Any changes
made to the tag groups take effect immediately. If the name is changed, Clients that have already used that tag
group as part of an item request are not affected until they release the item and attempt to reacquire it. New tag
groups added to the project immediately allows browsing from a client. Utilize the User Manager to restrict access
rights to server features to prevent operators from changing the properties.

What is the Alias Map?
The Alias Map provides both a mechanism for backwards compatibility with legacy server applications as well as a
way to assign simple alias names to complex tag references. This is especially useful in client applications that limit
the size of tag address paths. Although the latest version of the server automatically creates the alias map, users
can add their own alias map entries to compliment those created by the server. Users can also filter the server cre-
ated aliases so that the only ones visible are their own.

Alias Properties
The Alias Map allows a way to assign alias names to complex tag references that can be used in client applic-
ations.

Name: Specify the alias name, which can be up to 256 characters long. It must be unique in the alias map. For
information on reserved characters, refer to How To... Properly Name a Channel, Device, Tag, and Tag Group.

Description: Enter a description of this alias to clarify data sources and reports (optional).

Mapped to: Specify the location of the alias.

Scan Rate Override: Specify an update rate to be applied to all non-OPC tags accessed using this alias map entry.
The valid range is 0 to 99999990 milliseconds. The default is 0 milliseconds.
Note: When set to 0 milliseconds, the server observes the scan rate set at the individual tag level.
See Also: Configuration API Service — Endpoints

What is the Event Log?
The Event Log provides the date, time, and source of an error, warning, information, or security event. For more
information, select a link from the list below.

Event Log Settings

Properly Name a Channel, Device, Tag, and Tag Group
When naming a channel, device, tag, or tag group, the following characters are reserved or restricted:

l Periods
l Double quotation marks
l Leading underscores
l Leading or trailing spaces

Note: Some of the restricted characters can be used in specific situations. For more information, refer to the list
below.

1. Periods are used in aliases to separate the original channel name and the device name. For example, a
valid name is "Channel1.Device1".

2. Underscores can be used after the first character. For example, a valid name is "Tag_1".

3. Spaces may be used within the name. For example, a valid name is "Tag 1".

www. ptc.com

40

runtime-settings-eventlog.htm

Kepware Edge

Tip: Tag names must be unique. Tag group names must be unique. In addition, some UA Clients do not cor-
rectly interpret tag group and tag names that match, so it is NOT recommended to have any duplicate names
across tag group names and tag names.

Configuration API Service
The Configuration API allows an HTTPS RESTful client to add, edit, read, and delete objects such as channels,
devices, and tags in the server. The Configuration API offers the following features:

l Object definition in standard human-readable JSON data format
l Support for triggering and monitoring actions on some objects within the server
l Security via HTTP basic authentication and HTTP over SSL (HTTPS)
l Support for user-level access based on the User Manager and Security Policies Plug-In
l Transaction logging with configurable levels of verbosity and retention

Note: This document assumes familiarity with HTTPS communication and REST concepts.

Operation - The Configuration API supports connections and commands between the server and REST clients.

Security
REST clients to the Configuration API must use HTTPS Basic Authentication. The user credentials are defined in
the server User Group. Initial login to the Configuration API with Basic Authentication uses the Administrator user
name and the password set during installation. Additional users and groups should be created to allow appropriate
access.

The product Administrator password must be at least 14 characters and no more than 512 characters. Pass-
words should be at least 14 characters and include a mix of uppercase and lowercase letters, numbers, and special
characters. Choose a strong unique password that avoids well-known, easily guessed, or common passwords.
Passwords greater than 512 characters will be truncated.

The Administrator user account password cannot be reset, but additional administrative users can be added to
the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

Individual user accounts are locked for 10 minutes after 10 successive login attempts with different, incorrect
passwords.

Documentation
Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable

actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation is obtained as JSON-encoded documentation.

Configuration API Service — Concurrent Clients
The Configuration API can serve multiple REST clients at the same time. To prevent a client from editing stale con-
figurations, the Server Runtime maintains a numeric project ID. Each time an object is edited through the Con-
figuration API or the local Configuration client, the Project ID changes. The current project ID is returned in each
GET response. PUT, POST, and DELETE requests will return a new Project ID in the response HTTPS header if
the update to the project is successful. The current project ID must be specified by the client in all PUT requests.

The best practice is to issue a GET request, save the current project ID, and use that ID for the following PUT
request. If only one client is used, the client may put the property “FORCE_UPDATE”: true in the PUT request body
to force the Configuration API server to ignore the project ID.

Note: When the server Configuration application is opened and connected to the runtime, edits from users with
lower privileges are rejected. This is intentional to prevent users from interrupting the Configuration session of
another user with higher privileges.

See Also:

www. ptc.com

41

Kepware Edge

"Access to object denied." event log message

Configuration API Service — Log Retrieval
Messages from the event log, transaction log, and audit log can be retrieved from a REST client by sending a GET
request to the following endpoint: https://<hostname>:<port>/config/v1/<log_type> where <log_type> can be
replaced with one of the following values:

l event_log
l transaction_log
l audit_log

The response contains the log entries, formatted as comma-separated values.

Event Log (& Filtering)
Audit Log (& Filtering)

Sorting

l sortProperty: The property to sort by (i.e. timestamp)
l sortOrder: The sort order (ascending or descending)

Examples:
https://<hostname_or_ip>:<port>/config/v1/event_log?sortProperty=event&sortOrder=ascending
Sorts Event Log messages by event type in ascending order (from lowest to highest priority: Information, Warning,
Error, Security):

https://<hostname_or_ip>:<port>/config/v1/audit_log?sortProperty=user&sortOrder=ascending
Sorts Audit Log messages by user’s names in ascending order

Pagination
The log response can be paginated to break a long list of log entries into multiple pages. Pagination is enabled
when supplying the pageNumber and / or pageSize parameters:

l pageNumber: Represents the page index being accessed from a paginated response. The page number
must be an integer value between 1 and 2147483647. If this parameter is not specified but pageSize is, the
first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The page
size must be an integer value between 1 and 2147483647. If this parameter is not specified but pageNum-
ber is, 10 items per page are returned by default.

Below is an example of adding the pagination parameters to the endpoint:

l Using both pageSize and pageNumber:

https://<hostname_or_ip>:<port>/config/v1/event_log?pageNumber=1&pageSize=10

https://<hostname_or_ip>:<port>/config/v1/audit_log?pageNumber=5&pageSize=50

Note: Sorting and pagination of the logs is limited to the first 100,000 records. This means in Extended Data
Store persistence mode, records beyond 100,000 are not considered for sorting and pagination.

www. ptc.com

42

servermain_eventlog.htm
config-api-event-log.htm
config-api-audit-log.htm

Kepware Edge

Configuration API Service — Content Retrieval
Content is retrieved from the server by issuing an HTTP(S) GET request. The URI specified in the request can tar-
get one of the following areas:

1. Online documentation (ex. https://<hostname_or_ip>:<port>/config/v1/doc or /config/v1/doc/drivers)

2. Event log entries (ex. https://<hostname_or_ip>:<port>/config/v1/event_log)

3. Transaction log entries (ex. https://<hostname_or_ip>:<port>/config/v1/transaction_log)

4. Audit log entries (ex. https://<hostname_or_ip>:<port>/config/v1/audit_log)

5. Project configuration (ex. https://<hostname_or_ip>:<port>/config/v1/project or /con-
fig/v1/project/channels/Channel1)

When targeting project configuration, a REST client can specify the type(s) of content that should be returned. In
this context the word “content” refers to a category or categories of data about a collection or object instance.

By default, when a GET request is issued using an endpoint that identifies a collection, the server will return a
JSON array that contains one value for each instance in the collection where each value is a JSON object that con-
tains the properties of the instance.

By default, when a GET request is made using an endpoint that identifies an object instance, the server will return a
JSON object that contains the properties of that instance.

The default behavior of these requests can be altered by specifying one or more “content” query parameters appen-
ded to the URL as in https://<hostname>:<port>/config/v1/project?content=children. The following table shows the
available content types and their applicability to each endpoint type:

Content Type Collection Endpoint Object Instance Endpoint
properties yes yes

property_definitions no yes

property_states no yes

type_definition yes yes

children yes yes

serialize yes yes

The following table shows the structure of the JSON response for a given content type:

GET Request URI JSON Response Structure

https://<hostname_or_ip>:<-
port>/config/v1/project?content=properties

{
<property name>: <value>,
<property name>: <value>,
...
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_defin-
itions

[
{<property definition>},
{<property definition>},
...
]

https://<hostname_or_ip>:<-
port>/config/v1/project?content=property_states

{
“allow”:
{
<property name>: true/false,
<property name>: true/false,
...
},

www. ptc.com

43

Kepware Edge

GET Request URI JSON Response Structure
“enable”:
{
<property name>: true/false,
<property name>: true/false,
...
}
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=type_definition

{
"name": <type name>,
"collection": <collection name>,
"namespace": <namespace name>,
"can_create": true/false,
"can_delete": true/false,
"can_modify": true/false,
"auto_generated": true/false,
"requires_driver": true/false,
"access_controlled": true/false,
"child_collections": [<collection
names>]
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=children

{
<collection name>: [
{
“name”: <object instance name>,
“href”: <object instance uri>
},
...
],
<collection name>: [
{
“name”: <object instance name>,
“href”: <object instance uri>
},
...
],
...
}

https://<hostname_or_ip>:<-
port>/config/v1/project?content=serialize

"project": {
"common.ALLTYPES_DESCRIPTION": "object
instance description.",
"servermain.PROJECT_TITLE": "object
name",
"channels": [
....
“Devices”: [
...
“Tag Groups”: [
...
“Tags”: [...]
]

www. ptc.com

44

Kepware Edge

GET Request URI JSON Response Structure
]
],
"aliases": […
],
"client_interfaces": […
],
"_advancedtags": […
],
…
"_datalogger": […
],
"_iot_gateway": […
],
"_ua_gateway": […
],
…
}

Multiple content types can be specified in the same request by separating with a comma. For example,
https://<hostname>:<port>/config/v1/project?content=children,type_definition. When multiple types are specified,
the JSON response will contain a single object with a member for each requested content type as in:
{
 “properties”: <properties response structure>,
 “property_definitions”: <property definitions response structure>,
 “property_states”: <property states response structure>,
 “type_definition”: <type definition response structure>,
 “children”: <children response structure>
}

Type Definitions
The following table describes the members of the type definition JSON object.

Member Type Description
name string Object type name.

collection string Collection name. Identifies the collection in which objects of this type will exist. This name
constitutes a valid endpoint that can be addressed using the REST interface.

namespace string
Namespace that implements the object type. Objects that are implemented by the server
exist in the “servermain” namespace. Other namespaces are defined by optional com-
ponents such as drivers, plug-ins and client interfaces.

can_create bool Indicates whether or not instances of this type can be created by an end user. For
example, this is false for the “Project” type because it’s not something that can be created.

can_delete bool Indicates whether or not instances of this type can be deleted by an end user. Again, the
“Project” type is not something that can be deleted.

can_modify bool
Indicates whether or not instances of this type can be modified by an end user. For
example, the server has some auto-generated objects that exist to create a child col-
lection only and do not themselves have any modifiable properties.

auto_gen-
erated bool If true, instances of this type are auto-generated by the server. Typically objects of this

type will have the previous three members defined as “false”.

requires_
driver bool True if instances of this type cannot be created without supplying the name of an installed

driver.

access_
controlled bool True if the server provides group-level access control over the CRUD operations that can

be executed against an instance of this type (see User Manager in server help).

www. ptc.com

45

user-manager.htm

Kepware Edge

Member Type Description

child_col-
lections array

An array of collection names that are supported as children under an object of this type.
For example, if a type includes “devices” in “child_collections”, then object instances of
that type will support one or more “Device” instance as a child.

Property Definitions
A property definition identifies the characteristics of a given property, including the type of data it supports, applic-
able ranges, default value, etc. The JSON structure of a property definition object is defined as follows:

Member Type Description

symbolic_name string Identifies the property by canonical name in the form
<namespace>.<property name>.

display_name localized string

The name the property would have if shown in the
Server Configuration property editor. Value will be
returned in the language the server is currently con-
figured to use.

display_description localized string

The description the property would have if shown in the
Server Configuration property editor. Value will be
returned in the language the server is currently con-
figured to use.

group_name localized string

The name of the property group in which this property
belongs in the Server Configuration property editor.
The group represents the high-level category to which
the property belongs. Some objects may have only a
single group.

section_name localized string

The name of the collapsible section to which this prop-
erty belongs in the Server Configuration property
editor. This name would appear right above the prop-
erty in the property editor.

read_only Boolean True if the property is informational, not expected to
change once initially defined.

type string Determines the data type of the property value (see
“Property Types” below).

minimum_value number or null (applies to
numeric types)

Minimum value the property can have to be considered
valid. If null, there is no minimum.

maximum_value number or null (applies to
numeric types)

Maximum value the property can have to be considered
valid. If null, there is no maximum.

minimum_length number (applies to strings
only)

Minimum length a string value may have. 0 means no
minimum.

maximum_length number (applies to strings
only)

Maximum length a string value may have. -1 means no
maximum.

hints arrays of strings (applies
to strings only)

An array of possible choices that may be assigned to
the property value. This member not included if no hints
exist.

enumeration object (applies to enu-
merations only)

For enumeration properties, this object identifies the
valid name / value pairs the enumeration can have.
Structure is as follows:

{
<name>: number,
<name>: number,
...
}

allow array of objects

Defines a conditional dependency on one or more other
properties that determines whether this property is rel-
evant. Properties that are not allowed are not shown in
the Server Configuration property editor (see “Allow

www. ptc.com

46

Kepware Edge

Member Type Description
and Enable Conditions” below).

enable array of objects

Defines a conditional dependency on one or more other
properties that determines whether this property should
be enabled for the client to change. Properties that are
not enabled are grayed out in the Server Config prop-
erty editor (see “Allow and Enable Conditions” below).

To get specific information about the property definitions of a specific endpoint, add "?content=property_defin-
itions" to the end of the URL of a GET request.

For example, to get the property definitions for a channel named Channel1 with the server running on the local
host, the GET request would be sent to:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1?content=property_defin-
itions

The returned JSON block would look something like the following:
[

{
 "symbolic_name": "common.ALLTYPES_NAME",
 "display_name": "Name",
 "display_description": "Specify the identity of this object.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 1,
 "maximum_length": 256
 },

{
 "symbolic_name": "common.ALLTYPES_DESCRIPTION",
 "display_name": "Description",
 "display_description": "Provide a brief summary of this object or its use.",
 "group_name": "General",
 "section_name": "Identification",
 "read_only": false,
 "type": "String",
 "default_value": null,
 "minimum_length": 0,
 "maximum_length": 255
 },
…

Property Types
The following table describes the different values that a property definition may contain for the “type” member. The
“Value Type” identifies what JSON type the property value should have.

Type Name Value Type Description

AllowDeny bool Describes a property that contains the choices “Allow”=true and “Deny”=
false.

EnableDisable bool Describes a property that contains the choices “Enable”=true and “Dis-
able”= false.

YesNo bool Describes a property that contains the choices “Yes”=true and “No”=

www. ptc.com

47

Kepware Edge

Type Name Value Type Description
false.

String string Generic string. Properties of this type include minimum_length and max-
imum_length specifiers.

StringArray array
Array of strings. Properties of this type include minimum_length and
maximum_length specifiers that apply to the strings themselves, not the
length of the array.

Password string

Obfuscated string that contains a password. When changing the value
of a property of this type, a plain-text password is expected. Password
values should only be changed over a secure connection.
The product Administrator password must be at least 14 characters

and no more than 512. Passwords should include a mix of uppercase
and lowercase letters, numbers, and special characters. Choose a
strong unique password that avoids well-known, easily guessed, or com-
mon passwords. Passwords greater than 512 characters will be trun-
cated.

LocalFileSpec string A fully qualified file specification in the local file system.

UncFileSpec string A fully qualified file specification in a network location.

LocalPathSpec string A fully qualified path specification in the local file system.

UncPathSpec string A fully qualified path specification to a network location.

StringWithBrowser string Describes a property that has a string value (normally chosen from a col-
lection of dynamically generated strings).

Integer number Unsigned 32-bit integer value.

Hex number Unsigned 32-bit integer value intended to be displayed / edited in hexa-
decimal notation.

Octal number Unsigned 32-bit integer value intended to be displayed / edited in octal
notation.

SignedInteger number Signed 32-bit integer value.

Real4 number Single precision floating point value.

Real8 number Double precision floating point value.

Enumeration number One of the possible numeric values from the “enumeration” member of
the property definition.

PropArray object Describes a structure containing members that each have a fixed-length
array of values.

TimeOfDay number Integer value containing the number seconds since midnight that would
define a specific time of day.

Date number Unix time value that specifies midnight on a given date.

DateAndTime number Unix time value that specifies a specific time on a given date.

Blob array
Array of byte values that represents an opaque collection of data. Data
of this type originates in the server and is hashed to prevent modi-
fication.

Allow and Enable Conditions
For definitions that contain allow and/or enable conditions, this is the structure they would have in the JSON:
<condition>:
[

{
 “depends_on”: <property name>
 “operation”: “==” or “!=”
 “value”: <value>
 },
...
]

www. ptc.com

48

Kepware Edge

Each condition identifies another property that is a dependent and how it depends as equal or not equal to the
value of that property. More than one dependency can exist, either on the same property or different ones. If mul-
tiple exist, the “operation” will always be the same. Evaluation of the expression to determine the state of the con-
dition when multiple dependencies exist is a logical “or” for “==” and a logical “and” for “!=”.

When using “content=property_states”, the returned JSON describes the outcome of the evaluation of these con-
ditions (if they exist) for each property.

Filtering
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be filtered
by providing a filter query parameter on the URL. If a filter value is specified, the query returns only those objects
that contain the filter value. The collection can be filtered by the Name or Description property. The request only
returns those objects where the Name or Description property contains the filter value. The following example
demonstrates the filter query parameter:

Filter channel list by channels that contain the text "_Siemens" through:
https://<hostname_or_ip>:<port>/config/v1/project/channels?filter=_Siemens
This only returns channel objects that include the string “_Siemens” in the name or description field.

Sorting
Project configuration collection requests (i.e. https://<hostname>:<port>/config/v1/project/channels) can be sorted
by any property. To request sorting, specify a property name and the sort order (ascending or descending). The fol-
lowing examples demonstrate the query parameters for sorting.

Sort channels by description, ascending:
https://<hostname_or_ip>:<-
port>/config/v1/project/channels?sortOrder=ascending&sortProperty&=common.ALLTYPES_
DESCRIPTION)

Sort devices by tag count, descending:
https://<hostname_or_ip>:<-
port>/-
con-
fig/v1/-
project/channels/Simulator/devices?sortOrder=descending&sortProperty=servermain.DEVICE_
STATIC_TAG_COUNT)

Tip: Sorting by a string type property value, such as common.ALLTYPES_NAME, sorts objects by number order-
ing (e.g. “A1”, “A10”, “A11”, “A100”). Sorting by a numeric type property value, such as servermain.CHANNEL_
UNIQUE_ID, sorts objects by numeric value (e.g. 1, 2, 10, 20).

Pagination Parameters

During content retrieval (GET requests) on project configuration endpoints, collections can be paginated to break
up a response into multiple pages. Pagination is enabled when supplying the pageNumber and / or pageSize para-
meters:

l pageNumber: Represents the page index being accessed from a paginated response. The page number
must be an integer value between 1 and 2147483647. If this parameter is not specified but pageSize is, the
first page of the paginated response is returned by default.

l pageSize: Represents the number of objects that are shown on a page in paginated responses. The page
size must be an integer value between 1 and 2147483647. If this parameter is not specified but pageNum-
ber is, 10 items per page are returned by default.

Below are examples of adding the pagination parameters to a Project Configuration endpoint:

l Requesting both pageSize and pageNumber:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=1&pageSize=1

www. ptc.com

49

Kepware Edge

l Requesting the specified number of items with only the pageSize parameter:
https://<hostname_or_ip>:<port>/config/v1/channels/?pageSize=1

Note: without specifying the pageNumber parameter, the first page of results is returned.
l Requesting the specified page with only the pageNumber parameter:

https://<hostname_or_ip>:<port>/config/v1/channels/?pageNumber=2

Note: without specifying the pageSize parameter, up to 10 items are returned for the specified page.

When information is paginated, an additional object is appended to the body of the collection being retrieved. Here
is an example of pagination information returned with the body of a paginated response:
“pageIndex”: 1,
“totalPages”: 1,
“totalCount”: 1,
“hasPreviousPage”: false,
“hasNextPage”: false

Definitions for the returned pagination information:

l pageIndex: An integer representing page being accessed. This page contains a subset of content returned
from an unpaginated request. The pageIndex value is the same as the pageNumber parameter.

l totalPages: The total integer number of pages used to present the collection content
l totalCount: The number of objects within the entire collection.
l hasPreviouPage: A Boolean value returning true if there are any prior pages with content before the page

being accessed and false otherwise.
l hasNextPage: A Boolean value returning true if there is another page containing objects after the page

being accessed and false otherwise.

The table below describes the pagination behavior based on the parameters supplied in the request:

pageNumber pageSize Paginated? Page Index Returned Items Per Page

N/A N/A False N/A Total

x y True x Up to y

x N/A True x 10

N/A y True 1 Up to y

If no pagination parameters are specified, requests return the entire JSON response body and no pagination
information. Below is an example of a non-paginated request and response:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 Object Information
 }
]

If the pageNumber and/or pageSize pagination parameters are specified, requests return a subset of the entire
JSON response body with pagination information. Below is an example of a paginated request and response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

www. ptc.com

50

Kepware Edge

Example JSON response where collection of object size N=2:
[

{
 Object Information
 },

{
 "pageIndex": 1,
 "totalPages": 2,
 "totalCount": 2,
 "hasPreviousPage": false,
 "hasNextPage": true
 }
]
If a collection is empty and pagination is specified, only the pagination information is returned in the JSON
response body:

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels? pageNumber=1&pageSize=1

Example JSON response where collection of object size N=0:
[

{
 "pageIndex": 1,
 "totalPages": 0,
 "totalCount": 0,
 "hasPreviousPage": false,
 "hasNextPage": false
 }
]
Pagination only works for collections of objects. If the JSON payload contains a single object instance, pagination
information is not appended to the response.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>? pageNum-
ber=1&pageSize=1
Note: there is only one channel created in this instance.

Example JSON response where Just an object Instance is returned:
[

{
 Object Information
 }
]

Configuration API Service — Data
The Configuration API Service receives requests in standard JSON format from the REST client. These requests
are consumed by the server and broken down into create, read, update, or delete commands.

Please consult additional information on properties, data ranges, endpoint mapping scheme, and acceptable
actions for each endpoint is available at the Configuration API Landing Page at https://<hostname_or_ip>:<-
port>/config/ (for default configurations).

Documentation is obtained as JSON-encoded documentation.

 Object names containing spaces, or other characters disallowed in URL formatting, must be percent-encoded to
be correctly interpreted by the Configuration API. Percent encoding involves replacing disallowed characters with

www. ptc.com

51

Kepware Edge

their hexadecimal representation. For example, an object named 'default object' is percent-encoded as
default%20object. The following characters are not permitted in a URL and must be encoded:

*spac-
e* ! # $ & ' () * + , / : ; = ? @ []

%20 %2-
1

%2-
3

%2-
4

%2-
6

%2-
7

%2-
8

%2-
9

%2-
A

%2-
B

%2-
C

%2-
F

%3-
A

%3-
B

%3-
D

%3-
F

%4-
0

%5-
B

%5-
D

All leading and trailing spaces are removed from object names before the server validates them. This can create
a discrepancy between the object name in the server and the object name a user provides via the Configuration
API. Users can send a GET on the parent object after sending a PUT/POST to verify the new or modified object
name in the server matches what was sent via the API.

An attempt to perform a POST/PUT/DELETE with the API as a non-admin user fails if a user has the server con-
figuration open at the same time. The error is a 401 status code (unauthorized). Only one user can write to the
runtime at a time; the API cannot take permissions from the server configuration if it has insufficient credentials.

Create an Object
An object can be created by sending an HTTPS POST request to the Configuration API. When creating a new
object, the JSONmust include required properties for the object (ex. each object must have a name), but doesn’t
require all properties. All properties not included in the JSON are set to the default value on creation.

Example POST JSON body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
}

Create Multiple Objects
Multiple objects may be added to a given collection by including the JSON property objects in an array.

Example POST JSON body:
[
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 },
{

 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "<Property3_Name>": <Value>
 }
]

When a POST includes multiple objects, if one or more cannot be processed due to a parsing failure or some other
non-property validation error, the HTTPS status code 207 (Multi-Status) will be returned along with a JSON object
array containing the status for each object in the request.

For example, if two objects are included in the request and the second one specifies a non-validation error (in this
case a parsing error), two objects are output. One is a success, and the other is an error:
[
{

 “code”: 201,
 “message”: “Created”
 },
{

 “code”: 400,
 “message”: "Failed to parse JSON document at line 21: Property servermain.CHANNEL_

www. ptc.com

52

Kepware Edge

WRITE_OPTIMIZATIONS_DUTY_CYCLE cannot be converted to the expected type."
 }
]

If the error is a property validation error, the same HTTPS status code 207 is returned, but two error objects are
returned rather than one per property validation error. The basic error object contains the error code and error mes-
sage (such as above). The more comprehensive error message returns the property that caused the error, the error
description, the line of input that caused the error, the error code, and error message.
Tip: When there is a property validation error on multi-object requests, the order of the objects returned main-

tains the sequential order of the input.

For example, if two objects are included in the request and the second one specifies the same name as the first,
this is a property validation error:
{
 “property”: “common.ALLTYPES_NAME”,
 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 “code”: 400,
 “message”: "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

The first object returned is a response to successful creation of Channel1, while the second and third response
objects correspond to the property validation error.

Create an Object with Child Hierarchy
An object may be created with a full child object hierarchy beneath it. To do this, include that hierarchy in the POST
request just as it would appear when saved in a JSON project file.

For example, to create a channel with a device underneath it, the following JSON could be used:
{
"common.ALLTYPES_NAME": "Channel1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"devices":
[
{
"common.ALLTYPES_NAME": "Device1",
"servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
"servermain.DEVICE_MODEL": 0
}
]

}

There is no response body when a child object is created unless there is an error during creation (such as a parsing
error or property validation error). A response header with the Project_ID is returned with a successful request.
That response header includes the Project_ID value, which is a new Project_ID after successful object creation.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Read an Object
An object can be read by sending an HTTPS GET request to the Configuration API. All object properties are
returned on every GET request and each object includes a Project_ID. The Project_ID property is used to track
changes in the configuration and is updated on any change from the Configuration API or a server configuration cli-
ent. This property should be saved and used in all PUT requests to prevent stale data manipulations.

www. ptc.com

53

Kepware Edge

Example response body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678
}
The header of a successful GET request contains the Project_ID.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

 See Also: Content Retrieval

Edit an Object
An object can be edited by sending an HTTPS PUT request to the Configuration API. PUT requests require the Pro-
ject_ID or Force_Update property in the JSON body. Setting Force_Update to True ignores Project_ID validation.

Example PUT body:
{
 "<Property1_Name>": <Value>,
 "<Property2_Name>": <Value>,
 "PROJECT_ID": 12345678,
 "FORCE_UPDATE": true
}
Normally, when a PUT request succeeds and all properties are assigned successfully, there is no response body
returned to the client; there is only a 200 status code to indicate success. There can be cases where a property is
included in a PUT request that is not assigned to the object instance by the Server Runtime. In these cases, a
response body will be generated as follows:

The header of a successful PUT request contains the new Project_ID that changed.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Body:
{,
 "not_applied":,

{,
 "servermain.CHANNEL_UNIQUE_ID": 2466304381
 },
 "code": 200,
 "message": "Not all properties were applied. This could be due to active client ref-
erence or property is disallowed/disabled/read-only."
}

The response indicates which property or properties were not applied to the object instance where each contains
the value that is actually in use. There are several possible reasons why the property value could not be applied,
such as:

www. ptc.com

54

Kepware Edge

l The property is read-only and cannot be changed.
l There is a client reference on the object that restricts what properties can be updated.
l The property is not allowed based on the values of other properties on which this condition depends.
l The property is not enabled based on the values of other properties on which this condition depends.
l The value was transformed in some way (ex. rounded or truncated).

Delete an Object
An object can be deleted by sending an HTTPS DELETE request to the Configuration API. The Configuration API
does not allow deleting multiple items on the same level with a single request (such as deleting all of the devices in
a channel), but can delete an entire tree (such as deleting a device deletes all its child tags).

The header of a successful DELETE request contains the new Project_ID that changed.

Header Information
Key Value

Connection keep-alive

Content-Length 0

Project_ID 12345678

Errors
All Configuration API Service requests return errors in JSON format.

Example:
{
 "code": 400,
 "message": "Invalid property: 'NAME'."
}
See Also: Troubleshooting

Configuration API Service — Invoking Services
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Service Architecture
Services are designed to provide stateless interaction with the object on which they operate. Services are com-
prised of two components: a service and a job. The job executes the work asynchronously and provides a mech-
anism through which a client can monitor the job for completion or for any errors that occurred during its operation.
After a job completes, it is scheduled for deletion automatically by the server; no action is required by the client to
clean up the job after it completes.

Service
The service is the interface through which an action is invoked. The service exposes all parameters that can be spe-
cified during its invocation as properties. To see the available parameters, perform a HTTPS GET on the service
endpoint. All properties, besides the name and description of the service, are the parameters that can be included
when invoking a service. Depending on the service, some or all parameters may be required.

Invocation of a service is accomplished by performing a HTTPS PUT request on the service endpoint with any para-
meters specified in the body of the request. Services may limit the total number of concurrent invocations. If the
maximum number of concurrent invocations has been reached, the request is rejected with an "HTTPS 429 Too
Many Requests" response. If the limit has not been reached, the server responds with an "HTTPS 202 Accepted"
response and the body of the response including a link to the newly created job.

Successful PUT response example:

www. ptc.com

55

Kepware Edge

{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

Busy PUT response example:
{
 "code": 429,
 "message": "The server is busy. Retry the operation at a later time."
}

Job
The job represents a specific request accepted by the server. To check the status of a job, perform a HTTPS GET
request on the job endpoint. The servermain.JOB_COMPLETE property represents the current state of the job as
a Boolean. The value of this property remains false until the job has finished executing. If the job fails to execute for
any reason, it provides the client with an appropriate error message in the servermain.JOB_STATUS_MSG prop-
erty.

Job Cleanup
Jobs are automatically deleted by the server after a configurable amount of time. By default, after a job has com-
pleted, the client has 30 seconds to interact with it before the job is deleted. If a longer amount of time is required by
the client or the client is operating over a slow connection, the client can use the servermain.JOB_TIME_TO_
LIVE_SECOND parameter when invoking the service to increase the time-to-live up to a maximum of five minutes.
Each job has its own time-to-live and it may not be changed after a job has been created. Clients are not allowed to
manually delete jobs from the server, so it is best to choose the shortest time-to-live without compromising the cli-
ent’s ability to get the information from the job before it is deleted.

See Also: Tag Generation, Project Load, Project Save

Configuration API Service — Reinitialize Runtime Service
The Runtime Service can be reinitialized by interacting with the ReinitializeRuntime service. To initiate the rein-
itialization, a PUT request is sent to the endpoint with a body that defines the service name and the job’s desired
Time to Live (timeout).

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime

Body:
{
 "common.ALLTYPES_NAME" : "ReinitializeRuntime",
 "servermain.JOB_TIME_TO_LIVE_SECONDS" : 30
}

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ReinitializeRuntime/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ReinitializeRuntime/jobs/job1

www. ptc.com

56

Kepware Edge

Jobs are automatically cleaned up after the wait time expires. This wait time is configurable.

See Also: Job Cleanup

Configuration API Service — Project Load
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Project Load
Projects can be loaded by interacting with the ProjectLoad service on the ProjectLoad endpoint. First a GET
request must be sent to get the Project ID to later be used in the PUT request.

The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 3531905431,
 "common.ALLTYPES_NAME": "ProjectLoad",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": "",
 "servermain.PROJECT_PASSWORD": ""
}

To initiate the project load, a PUT request is sent to the server with the project file name, the project file password,
and the Project ID. If there is no password on the project, that field is not required. The project typically resides in
the user data directory, which is opt/kepedge/v1/user_data by default. Project loading supports SLPF, LPF, and
JSON file types. The request should look similar to the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad

Body:
{
 "PROJECT_ID": 3531905431,
 "servermain.PROJECT_FILENAME": "MyProject.json",
 "servermain.PROJECT_PASSWORD": ""
}
where the .json project file is located at /<install directory>/user_data/, which is /opt/kepedge/v1/user_data/ by
default.
Note: the location of the file is limited to within the install / version directory.

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/config/v1/project/services/ProjectLoad/jobs/job1"
}

www. ptc.com

57

Kepware Edge

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectLoad/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

See Also: Project Save

Configuration API Service — Project Save
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project save service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectSave endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Project Save
Projects can be loaded by interacting with the ProjectSave service on the ProjectSave endpoint. A GET request
must be sent to get the Project ID to later be used in the PUT request. The GET request should look similar to the
following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave
The server should respond with something similar to the following.

Body:
{
 "PROJECT_ID": 2401921849,
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.JOB_TIME_TO_LIVE_SECONDS": 30,
 "servermain.PROJECT_FILENAME": ""
}
To initiate the project save, a PUT request is sent with the project file path and name of the file with the extension
(SLPF, LPF, or JSON), the password to encrypt it with, and the Project ID. The password property is required for
SLPF file and ignored otherwise. The path is relative to the user data folder. The PUT request should look similar to
the following.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

Body:
{
 "PROJECT_ID": 2401921849,
 "servermain.PROJECT_FILENAME": "Projects/MyProject.SLPF",
 "servermain.PROJECT_PASSWORD": "MyPassword"
}
Note: the location of the file is limited to within the install / version directory.

The server should respond with something similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",

www. ptc.com

58

Kepware Edge

 "href": "/config/v1/project/services/ProjectSave/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information.

See Also: Project Load

Configuration API Service — Automatic Tag Generation
Objects may provide services if there are actions that can be invoked on the object beyond the standard CRUD
(Create, Retrieve, Update, Delete) operations. Services provide an asynchronous programmatic interface through
which remote clients can trigger and monitor these actions. Services can be found in a collection called ‘services’
underneath the object on which they operate. For example, the project load service is located at the https://<host-
name_or_ip>:<port>/config/v1/project/services/ProjectLoad endpoint as it operates on the project. Any object may
provide services, so query if the service collection exists, then query the collection to see the available services.

Automatic Tag Generation
The Automatic Tag Generation service operates under a device endpoint for a driver that supports Automatic Tag
Generation. The properties that support Automatic Tag Generation for the device must be configured prior to ini-
tiating Automatic Tag Generation. See the driver specific documentation for related properties.

To initiate Automatic Tag Generation, a PUT is sent to the TagGeneration endpoint with a defined empty payload.
In the following example, Automatic Tag Generation is initiated on Channel1/Device1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration

The response should look similar to the following.

Body:
{
 "code": 202,
 "message": "Accepted",
 "href": "/con-
fig/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1"
}

This means the request was accepted and the job was created as job1. The status of the job can be seen by query-
ing the job. This is done by sending a GET to the job’s endpoint. The GET request should look like the following.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/services/TagGeneration/jobs/job1

Jobs are automatically cleaned up after their wait time has expired. This wait time is configurable.
See the Job Cleanup section for more information

Note: Not all drivers support Automatic Tag Generation.

Tip: Automatic Tag Generation files must be located in the opt/kepedge/v1/user_data directory. All files in the
user_data directory must be world readable or owned by the Kepware Edge user and group that were created dur-
ing installation, by default this is kepedge.

www. ptc.com

59

Kepware Edge

Configuration API Service — Project Example
Project files control the communications and data collection of the server and all connected devices. Channel and
device properties are defined and saved in the project file and how they are configured can impact performance
(see Optimization). Tag and tag group settings saved in the project can impact how the data is available in control
and monitoring displays and reports. There must always be one active open project.

Project saving and loading is restricted to the /opt/kepedge/v1/user_data directory. A local user must be a member
of the Kepware Edge user group created during installation, kepedge by default, to be able to place files in this dir-
ectory. The /opt/kepedge/v1/user_data directory is also used for loading of automatic tag generation (ATG) files.
Note: All files in the user_data directory must be world readable or owned by the Kepware Edge user and group

that were created during installation, kepedge by default.
See Also: Application Data

Save a Project
Use a “PUT” command from a REST client to invoke the ProjectSave service and provide a unique file name for the
new file. All files are loaded from and saved to the /opt/kepedge/v1/user_data directory.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/services/ProjectSave

Body:
{
 "common.ALLTYPES_NAME": "ProjectSave",
 "servermain.PROJECT_FILENAME":"myProject.json"
}
Note: The project is saved to: <installation_directory>/user_data/. A path may be included in the file name, such

as ‘projects/MyProject.json’. Any directory that does not exist within the /opt/kepedge/v1//user_data/ directory will
be created upon successfully saving a project file.

Update a Project
The typical work flow for editing a project is to read the properties using a GET, modify the properties, then write
them into the body of the message using a PUT.

Read Available Device Properties Example

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>/devices

Return:
[
{

 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": <device_name>,
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "<driver>",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <ID>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "<channel_name>",
 "servermain.DEVICE_ID_FORMAT": 0,
 "servermain.DEVICE_ID_STRING": "<nnn.nnn.n.n>.0",
…
}

]
where nnn.nnn.n.n is the Device ID address.

Update Specific Device Properties Example
Only the properties you wish to change are needed for this step.

www. ptc.com

60

Kepware Edge

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/<channel_name>/devices/<device_
name>

Body:
{
 "project_id": <project_ID_from_GET>,
 "servermain.DEVICE_ID_STRING": "<nnn.nnn.n.n>.0"
}
where nnn.nnn.n.n is the Device ID address.

Configuration API Service — Response Codes
One of the following response codes may be returned from a REST request. Where possible, the body of the
response contains specific error messages to help identify the cause of the error and possible solutions:

l HTTPS/1.1 200 OK
l HTTPS/1.1 201 Created
l HTTPS/1.1 202 Accepted
l HTTPS/1.1 207 Multi-Status
l HTTPS/1.1 400 Bad Request
l HTTPS/1.1 401 Unauthorized

See Also: "Access to object denied." event log message
l HTTPS/1.1 403 Forbidden
l HTTPS/1.1 404 Not Found
l HTTPS/1.1 429 Too Many Requests
l HTTPS/1.1 500 Internal Server Error
l HTTPS/1.1 503 Server Runtime Unavailable
l HTTPS/1.1 504 Gateway Timeout
l HTTPS/1.1 520 Unknown Error

Project Properties (via API Commands)
The project endpoint is used to manage the project running in the server. All objects within the project can be found
underneath the project endpoint. To browse the child endpoints, see Content Retrieval.

The project endpoint provides a single point of access for configuring both global project settings as well as client
interfaces.
See Client Interfaces for detailed information on the available client interfaces and their associated settings.
See Project Properties for detailed information on the available Project Property settings.

Supported Actions
HTTPS Verb Action

GET Retrieves the current project properties

PUT Updates the project properties

Child Endpoints
Endpoint Description

/config/v1/project/channels Endpoint used to manage the channels in the project

/config/v1/project/_iot_
gateway Endpoint used to manage the IOT Gateway client interface configuration

/config/v1/project/aliases Endpoint used to manage the object aliases in the project

/config/v1/project/client_
interfaces Endpoint used to manage the various client interfaces

/config/v1/project/services Endpoint used to access the services available to the project (see Project Load

www. ptc.com

61

servermain_eventlog.htm
project-properties.htm

Kepware Edge

Endpoint Description
and Project Save)

GET /config/v1/project

Returns the set of project properties as they are configured when the request is processed.

Note: You cannot delete the project or create a new one. However, you can load a new project or save the pro-
ject using the Project Load and Project Save services.

See Also: Project Load and Project Save)

Resource Information

Type Description
Resource URL https://<hostname/port>:<port>/config/v1/project

Response Format JSON

Parameters

Content Returns
content=properties Returns the project properties

content=property_defin-
itions Returns a detailed description for each property in the project endpoint

content=property_states Returns the property states

content=type_definition Returns the type definitions

content=children Returns a collection of child endpoints underneath the project endpoint

content=serialize Recursively returns all the children with the property details in JSON format

Properties

Property Name Type Description

common.ALLTYPES_DESCRIPTION String Provide a brief summary of this object or its
use.

servermain.PROJECT_TITLE String Title of the project for informational purposes.

servermain.PROJECT_TAGS_DEFINED String Count of tags identified in the project

uaserverinterface.PROJECT_OPC_UA_
ENABLE YesNo

Enable the OPC UA server interface to accept
client connections. Changes in this property
require runtime reinitialization to take effect.

uaserverinterface.PROJECT_OPC_UA_
DIAGNOSTICS YesNo

Enable sending diagnostic information to the
event log.
Warning: Enabling UA diagnostics allows

server users to view encrypted OPC UA client
/ server traffic.

uaserverinterface.PROJECT_OPC_UA_
ANONYMOUS_LOGIN YesNo

Important: You must use Server Admin-
istration to define users if anonymous login is
not allowed.

uaserverinterface.PROJECT_OPC_UA_MAX_
CONNECTIONS Integer

The number of simultaneous OPC UA client
connections allowed by the server. Changes
in this property require runtime reinitialization
to take effect.

uaserverinterface.PROJECT_OPC_UA_MIN_
SESSION_TIMEOUT_SEC Integer Minimum session timeout period, in seconds,

that client is allowed to specify.

uaserverinterface.PROJECT_OPC_UA_MAX_
SESSION_TIMEOUT_SEC Integer Maximum session timeout period, in seconds,

that client is allowed to specify.

uaserverinterface.PROJECT_OPC_UA_TAG_ Integer Increase the timeout to improve performance

www. ptc.com

62

Kepware Edge

Property Name Type Description

CACHE_TIMEOUT_SEC for clients that perform reads / writes on unre-
gistered tags.

uaserverinterface.PROJECT_OPC_UA_
BROWSE_TAG_PROPERTIES YesNo Return tag properties when a client browses

the server address space.

uaserverinterface.PROJECT_OPC_UA_
BROWSE_ADDRESS_HINTS YesNo Return device addressing hints when a client

browses the server address space.

uaserverinterface.PROJECT_OPC_UA_MAX_
DATA_QUEUE_SIZE Integer

Maximum number of data change notifications
queued per monitored item. Higher limits give
the client more flexibility but can lead to higher
memory usage.

uaserverinterface.PROJECT_OPC_UA_MAX_
RETRANSMIT_QUEUE_SIZE Integer

Maximum number of notifications in the repub-
lish queue the server allows per subscription.
Higher limits use more memory but allow cli-
ents to retransmit older messages.

uaserverinterface.PROJECT_OPC_UA_MAX_
NOTIFICATION_PER_PUBLISH Integer

Maximum number of notifications the server
sends per publish. Use larger values for fast
and reliable connections.

thingworxinterface.ENABLED YesNo Enable the ThingWorx native interface.

thingworxinterface.HOSTNAME String "The hostname or IP address of the
ThingWorx Platform instance.

thingworxinterface.PORT Integer
The port used to connect to the platform
instance, commonly 443 for secure con-
nections.

thingworxinterface.RESOURCE String The endpoint URL of the platform hosting the
websocket server, such as '/ThingWorx/WS'.

thingworxinterface.APPKEY String The application key used to authenticate; this
is generated in the platform.

thingworxinterface.ALLOW_SELF_SIGNED_
CERTIFICATE YesNo Enable to trust valid self-signed certificates

presented by the server (less secure).

thingworxinterface.TRUST_ALL_
CERTIFICATES YesNo

Enable to trust all server certificates (include
self-signed and invalid) and completely dis-
able certificate validation. Do not use on a pro-
duction system.

thingworxinterface.DISABLE_ENCRYPTION YesNo
Disable SSL/TLS and allow connecting to an
insecure endpoint. Do not use on a production
system.

thingworxinterface.THING_NAME String The thing name presented to the platform.

thingworxinterface.PUBLISH_FLOOR_MSEC Integer
The minimum rate that updates are sent to the
platform. Set to zero to send updates as fast
as possible.

thingworxinterface.LOGGING_ENABLED YesNo
Enable ThingWorx Advanced Logging. When
enabled, advanced log information is routed to
the server event log.

thingworxinterface.LOG_LEVEL

Enumeration:

Trace: 0
Info: 2
Warning: 3
Error: 4
Audit: 6

Determines that amount of information
logged. Set to Trace to generate the most
detailed output.

thingworxinterface.VERBOSE YesNo
Determines the level of detail of each mes-
sage logged. Set to Yes to add additional verb-
osity.

www. ptc.com

63

Kepware Edge

Property Name Type Description
thingworxinterface.PROXY_ENABLED YesNo Enables ThingWorx proxy support.

thingworxinterface.PROXY_HOST String Specify the IP address or DNS name of the
proxy server to connect.

thingworxinterface.PROXY_PORT Integer Specify the number of the TCP port used to
connect to the proxy server.

thingworxinterface.PROXY_USERNAME String
Enter the password authentication string for
connecting to the ThingWorx server as the
user specified.

thingworxinterface.PROXY_PASSWORD String
Enter the password authentication string for
connecting to the ThingWorx server as the
user specified.

Example Request

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project

Example Response
{
"PROJECT_ID": 3536816236,
"common.ALLTYPES_DESCRIPTION": "",
"servermain.PROJECT_TITLE": "",
"servermain.PROJECT_TAGS_DEFINED": "121",
"uaserverinterface.PROJECT_OPC_UA_ENABLE": true
"uaserverinterface.PROJECT_OPC_UA_DIAGNOSTICS": false,
"uaserverinterface.PROJECT_OPC_UA_ANONYMOUS_LOGIN": true,
"uaserverinterface.PROJECT_OPC_UA_MAX_CONNECTIONS": 128,
"uaserverinterface.PROJECT_OPC_UA_MIN_SESSION_TIMEOUT_SEC": 15,
"uaserverinterface.PROJECT_OPC_UA_MAX_SESSION_TIMEOUT_SEC": 60,
"uaserverinterface.PROJECT_OPC_UA_TAG_CACHE_TIMEOUT_SEC": 5,
"uaserverinterface.PROJECT_OPC_UA_BROWSE_TAG_PROPERTIES": false,
"uaserverinterface.PROJECT_OPC_UA_BROWSE_ADDRESS_HINTS": false,
"uaserverinterface.PROJECT_OPC_UA_MAX_DATA_QUEUE_SIZE": 2,
"uaserverinterface.PROJECT_OPC_UA_MAX_RETRANSMIT_QUEUE_SIZE": 10,
"uaserverinterface.PROJECT_OPC_UA_MAX_NOTIFICATION_PER_PUBLISH": 65536,
"thingworxinterface.ENABLED": false,
"thingworxinterface.HOSTNAME": "hostname_or_ip",
"thingworxinterface.PORT": 443,
"thingworxinterface.RESOURCE": "/ThingWorx/WS",
"thingworxinterface.APPKEY": "",
"thingworxinterface.ALLOW_SELF_SIGNED_CERTIFICATE": false,
"thingworxinterface.TRUST_ALL_CERTIFICATES": false,
"thingworxinterface.DISABLE_ENCRYPTION": false,
"thingworxinterface.THING_NAME": "ThingWorxKepwareEdge",
"thingworxinterface.PUBLISH_FLOOR_MSEC": 1000,
"thingworxinterface.LOGGING_ENABLED": false,
"thingworxinterface.LOG_LEVEL": 3,
"thingworxinterface.VERBOSE": false,
"thingworxinterface.PROXY_ENABLED": false, "thingworxinterface.PROXY_HOST": "localhost",

"thingworxinterface.PROXY_PORT": 3128, "thingworxinterface.PROXY_USERNAME": "",
"thingworxinterface.PROXY_PASSWORD": "" }

Project Properties — OPC UA
OPC Unified Architecture (UA) provides a platform independent interoperability standard. The OPC UA Project
Properties group displays the current OPC UA settings in the server.

www. ptc.com

64

Kepware Edge

Server Interface

Enable: When enabled, the UA server interface is initialized and accepts client connections. When disabled, the
remaining properties on this page are disabled.

Client Sessions

Allow anonymous login: This property specifies whether or not a user name and password are required to estab-
lish a connection. For security, the default setting is No to disallow anonymous access and require credentials to
log in.
Tip: Additional users may be configured to access data without all the permissions associated with the admin-

istrator account. When the client supplies a password on connect, the server decrypts the password using the
encryption algorithm defined by the security policy of the endpoint, then uses it to login.
Note: Users can login as the Administrator using the password set during the installation of Kepware Edge to

login. Additional users may be configured to access data without all the permissions associated with the admin-
istrator account. When the client supplies a password on connect, the server decrypts the password using the
encryption algorithm defined by the security policy of the endpoint, then uses it to login.
When the client supplies a password on connect, the server decrypts the password using the encryption

algorithm defined by the security policy of the endpoint.

Max. connections: specify the maximum number of supported connections. The valid range is 1 to 256. The
default setting is 128.
Tip: The maximum connections to UA servers is 256.

Minimum session timeout: specify the UA client's minimum timeout limit for establishing a session. Values may be
changed depending on the needs of the application. The default value is 15 seconds.

Maximum session timeout: specify the UA client's maximum timeout limit for establishing a session. Values may
be changed depending on the needs of the application. The default value is 60 seconds.

Tag cache timeout: specify the tag cache timeout. The valid range is 0 to 60 seconds. The default setting is 5
seconds.

Note: This timeout controls how long a tag is cached after a UA client is done using it. In cases where UA cli-
ents read / write to unregistered tags at a set interval, users can improve performance by increasing the timeout.
For example, if a client is reading an unregistered tag every 5 seconds, the tag cache timeout should be set to 6
seconds. Since the tag does not have to be recreated during each client request, performance improves.

Browsing

Return tag properties: Enable to allow UA client applications to browse the tag properties available for each tag in
the address space. This setting is disabled by default.

Return address hints: Enable to allows UA client applications to browse the address formatting hints available for
each item. Although the hints are not valid UA tags, certain UA client applications may try to add them to the tag
database. When this occurs, the client receives an error from the server. This may cause the client to report errors
or stop adding the tags automatically. To prevent this from occurring, make sure that this property is disabled. This
setting is disabled by default.

Monitored Items

Max. Data Queue Size: specify the maximum number of data notifications to be queued for an item. The valid
range is 1 to 100. The default setting is 2.
Note: The data queue is used when the monitored item's update rate is faster than the subscription's publish

rate. For example, if the monitored item update rate is 1 second, and a subscription publishes every 10 seconds,
then 10 data notifications are published for the item every 10 seconds. Because queuing data consumes memory,
this value should be limited when memory is a concern.

Subscriptions

www. ptc.com

65

Kepware Edge

Max. retransmit queue size: specify the maximum number of publishes to be queued per subscription. The valid
range is 1 to 100. A value of zero disables retransmits. The default setting is 10.
Note: Subscription publish events are queued and retransmitted at the client's request. Because queuing con-

sumes memory, this value should be limited when memory is a concern.

Max. notifications per publish: specify the maximum number of notifications per publish. The valid range is 1 to
65536. The default setting is 65536.
Note: This value may affect the connection's performance by limiting the size of the packets sent from the server

to the client. In general, large values should be used for high-bandwidth connections and small values should be
used for low-bandwidth connections.

Configuration API Service — Channel Properties
The following properties define a channel using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

Note: Changing this property causes the API endpoint URL to change.

common.ALLTYPES_DESCRIPTION

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

Ethernet Communication Properties

servermain.CHANNEL_ETHERNET_COMMUNICATIONS_NETWORK_ADAPTER_STRING

Advanced Properties

servermain.CHANNEL_NON_NORMALIZED_FLOATING_POINT_HANDLING

Write Optimizations

servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD

servermain.CHANNEL_WRITE_OPTIMIZATIONS_DUTY_CYCLE

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Channel
To create a channel via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. Once a channel is defined, its properties and settings are used by all devices assigned to
that channel. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the channel endpoint.

The example below creates a channel named Channel1 that uses the Simulator driver on a server running on the
local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels
Body:
{
 “common.ALLTYPES_NAME”: “Channel1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

www. ptc.com

66

Kepware Edge

Refer to the driver specific help documentation to find out what properties are required to create a channel for
that driver.

Configuration API Service — Updating a Channel
To update a property or collection of properties on a channel, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the channel being updated is Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Channel1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…
To update or change a channel property, a PUT request is sent to the channel with the Project ID and the new prop-
erty value defined. In the following example, the channel name will change from Channel1 (from above) to Sim-
ulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the channel’s endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator
The response from the GET request should show the property value has changed. The response to the GET above
should look similar to the following:

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.CHANNEL_UNIQUE_ID": 2154899492,
 "servermain.CHANNEL_WRITE_OPTIMIZATIONS_METHOD": 2,
…

www. ptc.com

67

Kepware Edge

Configuration API Service — Removing Channel
To remove a channel, send a DELETE command to the channel endpoint to be removed. This causes the channel
and all of its children to be removed.

In the example below, the channel Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a GET to the "channels" endpoint; the removed channel will not be in the list of channels returned
from the GET request.

Configuration API Service — Device Properties
The following properties define a device using the Configuration API service.

General Properties

common.ALLTYPES_NAME * Required parameter

common.ALLTYPES_DESCRIPTION

servermain.DEVICE_CHANNEL_ASSIGNMENT

servermain.MULTIPLE_TYPES_DEVICE_DRIVER * Required parameter

servermain.DEVICE_MODEL * Not required, but verify the default is acceptable

servermain.DEVICE_ID_STRING * Required parameter

servermain.DEVICE_DATA_COLLECTION

servermain.DEVICE_SIMULATED

Scan Mode

servermain.DEVICE_SCAN_MODE

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_RATE_MS

servermain.DEVICE_SCAN_MODE_PROVIDE_INITIAL_UPDATES_FROM_CACHE

Auto Demotion

servermain.DEVICE_AUTO_DEMOTION_ENABLE_ON_COMMUNICATIONS_FAILURES

servermain.DEVICE_AUTO_DEMOTION_DEMOTE_AFTER_SUCCESSIVE_TIMEOUTS

servermain.DEVICE_AUTO_DEMOTION_PERIOD_MS

servermain.DEVICE_AUTO_DEMOTION_DISCARD_WRITES

Tag Generation

servermain.DEVICE_TAG_GENERATION_ON_STARTUP

servermain.DEVICE_TAG_GENERATION_DUPLICATE_HANDLING

www. ptc.com

68

Kepware Edge

servermain.DEVICE_TAG_GENERATION_GROUP

servermain.DEVICE_TAG_GENERATION_ALLOW_SUB_GROUPS

Tip: To Invoke Automatic Tag Generation, send a PUT with an empty body to the TagGeneration service end-
point on the device.
Note: All files in the user_data directory must be world readable by the kepedge user.
See Also: For more information, see Services help.

Timing
servermain.DEVICE_CONNECTION_TIMEOUT_SECONDS

servermain.DEVICE_REQUEST_TIMEOUT_MILLISECONDS

servermain.DEVICE_RETRY_ATTEMPTS

servermain.DEVICE_INTER_REQUEST_DELAY_MILLISECONDS

See Also: The server help system Configuration API Service section.

Configuration API Service — Creating a Device
To create a device via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the device endpoint
under a channel.

The example below will create a device named Device1 under Channel1 that uses the Simulator driver on a server
running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices
Body:
{
 “common.ALLTYPES_NAME”: “Device1”,
 “servermain.MULTIPLE_TYPES_DEVICE_DRIVER”: “Simulator”
}

Refer to the driver specific help documentation to find out what properties are required to create a device for that
driver.

Configuration API Service — Updating a Device
To update a property or collection of properties on a device, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID, see the Concurrent Clients section.

In the example below, the device being updated is Device1 under Channel1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Device1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,

www. ptc.com

69

Kepware Edge

 "servermain.DEVICE_UNIQUE_ID": <project_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

To update or change a device property a PUT request is sent to the device with the Project ID and the new property
value defined. In the following example the device name will change from Device1 (from above) to Simulator.

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator"
}

Following the PUT, a GET can be sent to the device endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.
Note: Some properties are client restricted and cannot be changed when a client is connected.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Simulator",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.MULTIPLE_TYPES_DEVICE_DRIVER": "Simulator",
 "servermain.DEVICE_MODEL": 0,
 "servermain.DEVICE_UNIQUE_ID": <device_ID_from_GET>,
 "servermain.DEVICE_CHANNEL_ASSIGNMENT": "Channel1",
…

Configuration API Service — Removing a Device
To remove a device, send a DELETE to the device endpoint to be removed. This will cause the device and all of its
children to be removed.

In the example below, the device Simulator will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Simulator

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the devices endpoint and the removed device will not be in the list of devices returned from
the GET request.

Configuration API Service — Creating a Tag
To create a tag via the Configuration API service, only a minimum set of properties are required; all others are set
to the default value. The specific properties are dependent on the protocol or driver selected.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tags endpoint
under a device.

www. ptc.com

70

Kepware Edge

The example below will create a tag named MyTag for address R5 under Channel1/Device1 that uses the Sim-
ulator driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Tags can also be created within a tag group. The process for adding a tag group is the same except the URL
changes to include the tag_group endpoint and the group name.
In the following example, the tag group RampTags already exists and a tag named MyTag is created under it with
the address R5.
For more information on creating a tag group, see Creating a Tag Group section.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
group/RampTags/tags

Body:
{
 “common.ALLTYPES_NAME”: “MyTag”,
 "servermain.TAG_ADDRESS": "R5"
}

Tip:
The properties of tags vary by protocol, device, model, and data type. Always consult the target device and data for
the correct properties. Generally, the following example for data type definition can be followed:
{
 "symbolic_name": "servermain.TAG_DATA_TYPE",
 "display_name": "Data Type",
 "display_description": "Select the format of the incoming tag data.",
 "read_only": false,
 "type": "Enumeration",
 "default_value": -1,
 "enumeration": {
 "Default": -1,
 "String": 0,
 "Boolean": 1,
 "Char": 2,
 "Byte": 3,
 "Short": 4,
 "Word": 5,
 "Long": 6,
 "DWord": 7,
 "Float": 8,
 "Double": 9,
 "BCD": 10,
 "LBCD": 11,
 "Date": 12,
 "LLong": 13,
 "QWord": 14,
 "String Array": 20,
 "Boolean Array": 21,
 "Char Array": 22,
 "Byte Array": 23,

www. ptc.com

71

Kepware Edge

 "Short Array": 24,
 "Word Array": 25,
 "Long Array": 26,
 "DWord Array": 27,
 "Float Array": 28,
 "Double Array": 29,
 "BCD Array": 30,
 "LBCD Array": 31,
 "Date Array": 32,
 "LLong Array": 33,
 "QWord Array": 34
}

Refer to the driver specific help documentation to find out what properties are required to create a tag for that
driver.

Configuration API Service — Updating a Tag
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to be
updated to get the Project ID.

For more information about the Project ID see the Concurrent Clients section.

In the example below, the tag being updated is MyTag under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "MyTag",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…
To update or change a tag property, a PUT request is sent to the tag with the Project ID and the new property value
defined.
In the following example, the tag name will change from MyTag (from above) to Tag1.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1"
}

Following the PUT a GET can be sent to the tag’s endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):

www. ptc.com

72

Kepware Edge

https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "Tag1",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAG_ADDRESS": "R0005",
 "servermain.TAG_DATA_TYPE": 5,
 "servermain.TAG_READ_WRITE_ACCESS": 1,
 "servermain.TAG_SCAN_RATE_MILLISECONDS": 100,
…

Configuration API Service — Removing a Tag
To remove a tag, send a DELETE to the tag’s endpoint to be removed. This will cause the tag and all of its children
to be removed.
In the example below, the tag Tag1 will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/Tag1

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the tags endpoint and the removed tag will not be in the list of tags returned from the GET
request.

Configuration API Service — Creating a Tag Group
To create a tag group via the Configuration API service, only a group name is required.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the tag_groups end-
point under a device.

The example below will create a tag group named RampTags under Channel1/Device1 that uses the Simulator
driver on a server running on the local host.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups

Body:
{
 “common.ALLTYPES_NAME”: “RampTags”
}

Tag groups can have tags and more tag groups nested under them. To add a Tag, see the Creating a Tag section.

To nest a Tag Group within another group, another POST action is required to add the existing group name and the
tag_groups endpoint to the end of the URL.

Continuing the example above, the new request would look like the following.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags/tag_groups

www. ptc.com

73

Kepware Edge

Body:
{
 “common.ALLTYPES_NAME”: “1-10”
}

Configuration API Service — Updating a Tag Group
To update a property or collection of properties on a tag, a GET request must first be sent to the endpoint to be
updated to get the Project ID.
For more information about the Project ID, see the Concurrent Clients section.

In the example below, the tag group being updated is RampTags under Channel1/Device1.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampTags
The GET request will return a JSON blob similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}
To update or change a tag group property, a PUT request is sent to the tag group with the Project ID and the new
property value defined.
In the following example, the tag group name will change from RampTags (from above) to RampGroup.

Endpoint (PUT):
https://<hostname_or_ip>:<-
port>/config/v1/project/channels/Channel1/devices/Device1/tags/MyTag
Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampGroup"
}
Following the PUT, a GET can be sent to the tag group endpoint to validate that the property changed. In this case,
because the name was changed, the endpoint also changed and the GET request would be the following.

Endpoint (GET):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup
The response from the GET request will show the property value has changed. The response to the GET above
should look similar to the following.

Body:
{
 "PROJECT_ID": <project_ID_from_GET>,
 "common.ALLTYPES_NAME": "RampTags",
 "common.ALLTYPES_DESCRIPTION": "",
 "servermain.TAGGROUP_LOCAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_TOTAL_TAG_COUNT": 0,
 "servermain.TAGGROUP_AUTOGENERATED": false
}

www. ptc.com

74

Kepware Edge

Configuration API Service — Removing a Tag Group
To remove a tag group, send a DELETE to the tag group endpoint to be removed. This will cause the tag group and
all of its children to be removed. In the example below the tag group RampGroup will be removed.

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/project/channels/Channel1/devices/Device1/tag_
groups/RampGroup

This can be verified by sending a GET to the removed endpoint. The server will respond with an error. It can also
be verified with a get to the tag_groups endpoint and the removed tag group will not be in the list of tag groups
returned from the GET request.

Configuration API Service — Property Validation Error Object
When making a POST request to create an object or making a PUT request to update an object or project prop-
erties, new values for those properties may be input as the body of the PUT or POST request to change the values.
If there is a property validation error, two error objects appear. The first error object contains an error code and a
message detailing why the error occurred. The second error object shows the same error code and error message
in addition to an error property value, a description of that error property, and the line of input that created the error.
The following example shows the error object of a POST request to create an object with a name that already
exists.

Response Body:
{
 “property”: “common.ALLTYPES_NAME”,
 “description”: “The name “Channel1” is already used.”,
 “error_line”: 7,
 "code": 400,
 "message": "Validation failed on property common.ALLTYPES_NAME in object definition at
line 7: The name 'Channel1' is already used."
}

Configuration API Service — User Management
The User Manager controls client access to the project's objects (which are the channels, devices, tags. etc.) and
their corresponding functions. The User Manager allows permissions to be specified by user groups. For example,
the User Manager can restrict user access to project tag data based on its permissions from the parent user group.

1. The product Administrator password must be at least 14 characters and no more than 512. Passwords
should include a mix of uppercase and lowercase letters, numbers, and special characters. Choose a
strong unique password that avoids well-known, easily guessed, or common passwords. Passwords
greater than 512 characters will be truncated.

User Groups

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Supported Actions

HTTP(S) Verb Action
POST Create the specified group

GET Retrieves a list of all groups

DELETE Removes the specified group and all of its users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>

Supported Actions

www. ptc.com

75

Kepware Edge

HTTP(S) Verb Action
GET Retrieves the specified group

PUT Updates the specified group

DELETE Removes the specified user

Properties

Property Name Type Required Description
common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_
DESCRIPTION String No Provide a brief summary of this object or its

use.

libadminsettings.USERMANAGER_
GROUP_ENABLED Enable/Disable No The group's enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_
IO_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access I/O tag data.

libadminsettings.USERMANAGER_
IO_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify I/O tag data. Note: When
USERMANAGER_IO_TAG_READ is set to
false, this property is also set to false and
disabled to prevent write-only tags.

libadminsettings.USERMANAGER_
IO_TAG_DYNAMIC_
ADDRESSING

Enable/Disable No Allow/deny clients belonging to the group
to add items using dynamic addressing.

libadminsettings.USERMANAGER_
SYSTEM_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access system tag data.

libadminsettings.USERMANAGER_
SYSTEM_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify system tag data. Note: When
USERMANAGER_SYSTEM_TAG_READ
is set to false, this property is also set to
false and disabled to prevent write-only
tags.

libadminsettings.USERMANAGER_
INTERNAL_TAG_READ Enable/Disable No Allow/deny clients belonging to the group

to access internal tag data.

libadminsettings.USERMANAGER_
INTERNAL_TAG_WRITE Enable/Disable No

Allow/deny clients belonging to the group
to modify internal tag data. Note: When
USERMANAGER_INTERNAL_TAG_
READ is set to false, this property is also
set to false and disabled to prevent write-
only tags.

libadminsettings.USERMANAGER_
SERVER_MANAGE_LICENSES Enable/Disable No Allow/deny users belonging to the group to

access the license manager.

libadminsettings.USERMANAGER_
SERVER_MODIFY_SERVER_
SETTINGS

Enable/Disable No Allow/deny users belonging to the group to
access this property sheet.

libadminsettings.USERMANAGER_
SERVER_DISCONNECT_
CLIENTS

Enable/Disable No
Allow/deny users belonging to the group to
take action that can cause data clients to
be disconnected.

libadminsettings.USERMANAGER_
SERVER_RESET_EVENT_LOG Enable/Disable No Allow/deny users belonging to the group to

clear all logged event messages.

libadminsettings.USERMANAGER_
SERVER_OPCUA_DOTNET_
CONFIGURATION

Enable/Disable No

Allow/deny users belonging to the group to
access the OPC UA configuration man-
ager. Allow/deny users belonging to the
group to access the XI configuration man-
ager.

libadminsettings.USERMANAGER_ Enable/Disable No Allow/deny users belonging to the group to

www. ptc.com

76

Kepware Edge

Property Name Type Required Description
SERVER_CONFIG_API_LOG_
ACCESS

access the Configuration API Transaction
Log.

libadminsettings.USERMANAGER_
SERVER_REPLACE_RUNTIME_
PROJECT

Enable/Disable No Allow/deny users belonging to the group to
replace the running project.

libadminsettings.USERMANAGER_
BROWSE_BROWSENAMESPACE Enable/Disable No Allow/deny clients belonging to the user

group to browse the project namespace.

Project Permissions

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_per-
missions

Supported Actions

HTTP(S) Verb Action
GET Retrieves a list of all project permissions

Child Endpoints

Properties

Endpoint Description
/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Alias

Configure default 'Servermain Alias' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Channel

Configure default 'Servermain Channel' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Device

Configure default 'Servermain Device' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Meter Order

Configure default 'Servermain Meter Order' access
permissions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Phone Number

Configure default 'Servermain Phone Number'
access permissions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Phone Priority

Configure default 'Servermain Phone Priority'
access permissions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Project

Configure default 'Servermain Project' access per-
missions for the selected user group.
Note: Add and delete properties are disabled for

this endpoint.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Tag

Configure default 'Servermain Tag' access per-
missions for the selected user group.

/config/v1/admin/server_user-
groups/<GroupName>/project_permissions/Servermain
Tag Group

Configure default 'Servermain Tag Group' access
permissions for the selected user group.

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/<GroupName>/project_per-
missions/<PermissionName>

www. ptc.com

77

Kepware Edge

Supported Actions

HTTP(S) Verb Action
GET Retrieves the specified project permission

PUT Updates the specified project permission

Properties

Property Name Type Description
common.ALLTYPES_NAME String Specify the identity of this object.

common.ALLTYPES_DESCRIPTION String Provide a brief summary of this object or its
use.

libadminsettings.USERMANAGER_
PROJECTMOD_ADD Enable/Disable Allow/deny users belonging to the group to

add this type of object.

libadminsettings.USERMANAGER_
PROJECTMOD_EDIT Enable/Disable Allow/deny users belonging to the group to

edit this type of object.

libadminsettings.USERMANAGER_
PROJECTMOD_DELETE Enable/Disable Allow/deny users belonging to the group to

delete this type of object.

Users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Supported Actions

HTTP(S) Verb Action
POST Create the specified user

GET Retrieves a list of all users

Endpoint: https://<hostname_or_ip>:<port>/config/v1/admin/server_users/<UserName>

Supported Actions

HTTP(S) Verb Action
GET Retrieves the specified user

PUT Updates the specified user

Properties

Property Name Type Required Description
common.ALLTYPES_NAME String Yes Specify the identity of this object.

common.ALLTYPES_
DESCRIPTION String No Provide a brief summary of this object or its

use.

libadminsettings.USERMANAGER_
USER_GROUPNAME String Yes The name of the parent group.

libadminsettings.USERMANAGER_
USER_ENABLED Enable/Disable No The group‘s enabled-state takes pre-

cedence over the users enabled state.

libadminsettings.USERMANAGER_
USER_PASSWORD Password No

The user’s password. This is case-sens-
itive.
The password must be at least 14 char-

acters and no more than 512 characters.
Passwords should include a mix of upper-
case and lowercase letters, numbers, and
special characters. Avoid well-known, eas-
ily guessed, or common passwords. Pass-
words greater than 512 characters will be
truncated.

www. ptc.com

78

Kepware Edge

Note: If there are errors when writing to read / write system tags, verify that the authenticated user has the appro-
priate permissions.

Configuration API Service — Creating a User
To create a user via the Configuration API service, only a minimum set of properties are required; all others are set
to the default value.

Only members of the Administrators group can create users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_users end-
point.

The example below creates a user named User1 that is a member of the server Administrators user group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users

Body:
{
 "common.ALLTYPES_NAME": "User1",
 "libadminsettings.USERMANAGER_USER_GROUPNAME": "Administrators",
 "libadminsettings.USERMANAGER_USER_PASSWORD": "<Password>"
}
 The Administrator user account password cannot be reset, but additional administrative users can be added to

the Administrator user group. Best practices suggest each user with administrative access be assigned unique
accounts and passwords to ensure audit integrity and continual access through role and staff changes.

 The product Administrator password must be at least 14 characters and no more than 512. Passwords should
include a mix of uppercase and lowercase letters, numbers, and special characters. Choose a strong unique pass-
word that avoids well-known, easily guessed, or common passwords. Passwords greater than 512 characters will
be truncated.

Configuration API Service — Creating a User Group
To create a group via the Configuration API service, only a minimum set of properties are required; all others are
set to the default value. Once a user group is defined, its permissions are used by all users assigned to that user
group.

Only members of the Administrators group can create user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
groups endpoint.

The example below creates a user group named Operators:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups

Body:
{
 “common.ALLTYPES_NAME”: “Operators”,
}

Configuration API Service — Updating a User
To update a user via the Configuration API service, provide new values for the properties that require updating.
Only members of the Administrators group can update users.
There is no PROJECT_ID field for users.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the server_user-
s/<username> endpoint.

www. ptc.com

79

Kepware Edge

The example below updates the user named User1 to add a description and move it to a different user group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_users/User1

Body:
{
"common.ALLTYPES_DESCRIPTION": "The user account of User1", "libadminsettings.USERMANAGER_
USER_GROUPNAME": "Operators"
}

Configuration API Service — Updating a User Group
To edit a user group via the Configuration API service, provide new values for the properties that require updating.
Only members of the Administrators group can update user groups.
There is no PROJECT_ID field for user groups.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the server_user-
groups/<groupname> endpoint.

The example below updates the user group named Operators to have permissions to modify server settings, cause
clients to be disconnected, and loading new runtime projects; it also updates the description of the group:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators

Body:
{
 "common.ALLTYPES_DESCRIPTION": "User group for standard operators",
 "libadminsettings.USERMANAGER_SERVER_MODIFY_SERVER_SETTINGS": true,
 "libadminsettings.USERMANAGER_SERVER_DISCONNECT_CLIENTS": true,
 "libadminsettings.USERMANAGER_SERVER_REPLACE_RUNTIME_PROJECT": true
}

Note: Group permissions for the administrator group are locked and cannot be modified by any user to prevent
an administrator from accidentally disabling a permission that could prevent administrators from modifying any
user permissions. Only users in the Administrator group can modify the permissions for other groups.

Configuration API Service — Configuring User Group Project Permissions
All user groups contain a collection of project permissions. Each project permission corresponds to a specific per-
mission applied when interacting with objects in the project. All permissions are always present under a user group
(and therefore cannot be created nor deleted). An individual project permission can be granted or denied by updat-
ing that specific project permission under the desired User Group.
Only members of the Administrators group can update a user group’s project permissions.
There is no PROJECT_ID field for project permissions.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a PUT request to the project_per-
missions/<permission_name> endpoint.

The example below updates the user-created user group named Operators to grant permission to users of that
group to add, edit, and delete channels:

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/server_usergroups/Operators/project_per-
missions/Servermain Channel

Body:
{
 "libadminsettings.USERMANAGER_PROJECTMOD_ADD": true,
 "libadminsettings.USERMANAGER_PROJECTMOD_EDIT": true,

www. ptc.com

80

Kepware Edge

 "libadminsettings.USERMANAGER_PROJECTMOD_DELETE": true
}

Configuration API Service — Configuring Licensing Server
Parameters configuring the Licensing Server connection as well as various logging parameters, such as the Event
Log are configured under the admin endpoint.

Note: There is no PROJECT_ID field for admin permissions.

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/admin/

Supported Actions

HTTP(s) Verb Action

GET Retrieves a list of admin properties

PUT Updates the specified admin properties

Properties

Name Type Default Description

libadminsettings.LICENSING_
SERVER_PORT

Integer 7070 The port number used to con-
nect to license server for non-
TLS connections

libadminsettings.LICENSING_
SERVER_NAME

String " " Host name or IP address for the
license server (character limit is
63 characters)

libadminsettings.LICENSING_
SERVER_ENDPOINT

String fne/bin/capability URL endpoint for the license
server

libadminsettings.LICENSING_
SERVER_ENABLE

Enable/Disable false Enable the connection to the
license server

libadminsettings.LICENSING_
CHECK_PERIOD_MINS

Integer 5 Time in minutes between
checks of the license state. A
license check occurs whenever
a feature in use requires a
license until it successfully bor-
rows one.

libadminsettings.LICENSING_
SERVER_SSL_PORT

Integer 1443 The port number used to con-
nect to License Server for TLS
connections

libadminsettings.LICENSING_
SERVER_ALLOW_INSECURE_
COMMS

Enable/Disable false Enable an insecure (non-TLS)
connection to the License
Server

libadminsettings.LICENSING_
SERVER_ALLOW_SELF_SIGNED_
CERTS

Enable/Disable false Enable use of self-signed cer-
tificates when establishing a
TLS connection to the license
server. Self-signed certificates
are not secure and should only
be used for testing.

libadminsettings.LICENSING_
CLIENT_ALIAS

String " " User-specified name used for
requesting license from license
server. Character limit is 63 char-
acters.

www. ptc.com

81

Kepware Edge

Configuration API Service — OPC UA Endpoint
While the majority of the OPC UA configuration is located under the Projects endpoint, the ua-endpoints are con-
figured under the admin endpoint:
See Also: Project Properties — OPC UA

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints

Supported Actions

HTTP(S) Verb Action
GET Retrieves a list of all UA endpoint objects

POST Creates a new UA endpoint

Endpoint:
https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/<endpointName>

Supported Actions:

HTTP(S) Verb Action
GET Retrieves the specified UA endpoint

PUT Updates the specified UA endpoint

Properties

Name Type Required Default Description

common.ALLTYPES_NAME String Yes NA Specifies the identity of
this object

common.ALLTYPES_DESCRIPTION String No ""

Lists available network
adapters found on the sys-
tem. Adapters without
assigned IP address are
listed as disconnected.

libadminsettings.UACONFIGMANAGER_
ENDPOINT_ENABLE Enable/Disable No True Defines if the endpoint is

enabled or disabled

libadminsettings.UACONFIGMANAGER_
ENDPOINT_ADAPTER String No "Default"

Specifies the network
adapter to which the end-
point will be bound. A list
of network adapters
installed on the system is
provided in the endpoint
Description property.

The “Default” adapter
indicates that the end-
point can bind to any
adapter.
Note: Network

adapters that do not have
a valid IPv4 address can
be used for configuring a
UA Endpoint; however,
an endpoint is only used
when there is a valid IPv4
address during startup.
The server needs to be
reinitialized for endpoint
configurations to be
refreshed after con-

www. ptc.com

82

Kepware Edge

Name Type Required Default Description
figuration changes are
made to the host’s net-
work adapters.

libadminsettings.UACONFIGMANAGER_
ENDPOINT_PORT Integer No 49330

The port number to which
the endpoint will be
bound

libadminsettings.UACONFIGMANAGER_
ENDPOINT_URL String No ""

The endpoint URL
(READONLY).
The property value is gen-
erated based on the selec-
ted network adapter and
port property.
Note: The property is

blank when the specified
network adapter does not
have a valid IPv4
address.

libadminsettings.UACONFIGMANAGER_
ENDPOINT_SECURITY_NONE Enable/Disable No False

The accepted endpoint
security policy:
None: Endpoint

accepts insecure con-
nections
Note: {Insecure}

This setting is insecure
and not recommended.

libadminsettings.UACONFIGMANAGER_
ENDPOINT_SECURITY_BASIC256_
SHA256

Enum No 2

The accepted endpoint
security policy:
BASIC256_SHA256:
Endpoint accepts
BASIC256_SHA256
encrypted connections
The value determines the
supported message
mode or disabled if no
message mode is selec-
ted:
Enum=Disabled:0
Enum=Sign:1
Enum=Sign and
Encrypt:2
Enum=Sign; Sign and
Encrypt:3

libadminsettings.UACONFIGMANAGER_
ENDPOINT_SECURITY_BASIC128_
RSA15

Enum No 0

The accepted endpoint
security policy:
BASIC128_RSA15: End-
point accepts BASIC128_
RSA encrypted con-
nections.
The value determines the
supported message
mode or disabled if no
message mode is selec-
ted:
Enum=Disabled:0
Enum=Sign:1
Enum=Sign and

www. ptc.com

83

Kepware Edge

Name Type Required Default Description
Encrypt:2
Enum=Sign; Sign and
Encrypt:3
Note: {Deprecated}

This security policy is
deprecated.

libadminsettings.UACONFIGMANAGER_
ENDPOINT_SECURITY_BASIC256 Enum No 0

The accepted endpoint
security policy:
BASIC256: Endpoint
accepts BASIC256
encrypted connections
The value determines the
supported message
mode or disabled if no
message mode is selec-
ted:
Enum=Disabled:0
Enum=Sign:1
Enum=Sign and
Encrypt:2
Enum=Sign; Sign and
Encrypt:3
Note: {Deprecated}

This security policy is
deprecated.

Note: A maximum of 100 OPC UA endpoints may be configured on a single instance of Kepware Edge.

Configuration API Service — Creating a UA Endpoint
To create a UA endpoint via the Configuration API service, only a minimum set of properties are required; all others
are set to their default value.

To create a new UA endpoint, use a REST-based API tool such as Postman, Insomnia, or Curl and make a POST
request to the admin/ua_endpoints endpoint.

Endpoint (POST):
https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints

Body:
{
 "common.ALLTYPES_NAME": "Endpoint1"
}

Configuration API Service — Updating a UA Endpoint
To update a UA endpoint via the Configuration API service, provide new values for the properties that require updat-
ing.

Using a REST-based API tool such as Postman, Insomnia, or Curl; make a POST request to the ua_end-
points/<endpoint> endpoint.

The example below updates the endpoint named Endpoint1 with a new port number and security policy:

Endpoint (PUT):
https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/Endpoint1

Body:

www. ptc.com

84

Kepware Edge

{
"libadminsettings.UACONFIGMANAGER_ENDPOINT_PORT": 49321,
"libadminsettings.UACONFIGMANAGER_ENDPOINT_SECURITY_BASIC256": 1
}

Configuration API Service — Removing a UA Endpoint
To delete an existing UA endpoint, make a DELETE request to the ua_endpoints/<endpoint_name> endpoint. A
request body is not required:

Endpoint (DELETE):
https://<hostname_or_ip>:<port>/config/v1/admin/ua_endpoints/Endpoint1
Body:
{
}

Connecting with an OPC UA Client Using UaExpert
An application like Unified Automation's UaExpert can be used to verify the flow of data from devices through Kep-
ware Edge.

The UaExpert tool is designed to be a general-purpose OPC UA test client; it is not meant for production. Below
is a walk-through of creating a secure user with specific data access rights to read and write tags.

Default OPC UA Server Settings

l URL: opc.tcp://<hostname>:<port>
l Port: 49330
l Security Policies: Basic256Sha256
l Authentication: (Enabled by default)
l Server Interface Enabled: True

Creating a User Group and User with Read / Write / Browse Access

1. Install Kepware Edge with default settings.

2. Add a new user group with data access and browse permissions via the Config API:

Endpoint (POST):
https://<hostname>:<port>/config/v1/admin/server_usergroups
Body:
{
"common.ALLTYPES_NAME": "Group1",
"libadminsettings.USERMANAGER_GROUP_ENABLED": true,
"libadminsettings.USERMANAGER_IO_TAG_READ": true,
"libadminsettings.USERMANAGER_IO_TAG_WRITE": true,
"libadminsettings.USERMANAGER_BROWSE_BROWSENAMESPACE": true
}

3. Add a new user with a password to the group created in above.

Endpoint (POST):
https://<hostname>:<port>/config/v1/admin/server_users
Body:
{
"common.ALLTYPES_NAME": "User1",
"libadminsettings.USERMANAGER_USER_GROUPNAME": "Group1",
"libadminsettings.USERMANAGER_USER_ENABLED": true,

www. ptc.com

85

Kepware Edge

"libadminsettings.USERMANAGER_USER_PASSWORD": "<insert_password>"
}

Adding Server Connection to UaExpert

1. Download, install, and launch UaExpert from Unified Automation.

2. Select the Server | Add drop-down menu option.

3. In the Add Server configuration window, double-click the Add Server option located under Custom Dis-
covery.

4. Enter the URL and port for the machine to connect. For example: “opc.tcp://<hostname>:49330”.

5. A new server connection is added in the Custom Discovery group.

6. Expand the new server connection for a list of valid endpoints. These are the available security options for
the server. In this example, only one option is available.

7. Choose the Basic256Sha256 – Sign & Encrypt security option.

8. Set the user name and password using the settings used in the creation of the user above.

9. Check the Store checkbox to save the password or leave it unchecked and to be prompted for a password
when connecting to the server.

10. Click OK to close the window.

11. Verify that "Kepware Edge/UA" appears under Servers.

12. Right-click on the server and select Connect.

13. A certificate validation window appears.

14. Click Trust Server Certificate for the client to trust the Kepware Edge/UA server.

15. Click Continue. There is an error until the server trusts the client certificate.

16. To trust the client certificate on the server, these instructions use the edge_admin tool (see the server help
for other methods).

17. The client certificate’s thumbprint is required to trust it. To get the thumbprint, use the edge_admin tool to
list the certificates in the UA Server trust store:
$./edge_admin manage-truststore --list uaserver

18. The output of the list shows a thumbprint, a status, and a common name of the certificate.
The UaExpert certificate will be Rejected. Use the thumbprint to trust the certificate.
$./edge_admin manage-truststore --trust=
<certificate_thumbprint> uaserver

19. List the certificates of the UA Server to verify that the certificate is now trusted.

20. In UaExpert, right-click on the server and click Connect. The connection should succeed and the Address
Space window in the lower right pane should be populated, which enables browsing for and adding tags.

21. Add a tag in the data access view to verify that the user has read access.

22. Change the value of the tag to verify that the user has write access.

www. ptc.com

86

Kepware Edge

Event Log Messages
The following information concerns messages posted to the Event Log. Server help contains many common mes-
sages, so should also be searched. Generally, the type of message (informational, warning) and troubleshooting
information is provided whenever possible.

Tip: Messages that originate from a data source (such as third-party software, including databases) are presen-
ted through the Event Log. Troubleshooting steps should include researching those messages online and in
vendor documentation.

The Config API SSL certificate contains a bad signature.
Error Type:
Error

The Config API is unable to load the SSL certificate.
Error Type:
Error

Unable to start the Config API Service. Possible problem binding to port.
Error Type:
Error

Possible Cause:
The HTTP or HTTPS port specified in the Config API settings is already bound by another application.

Possible Solution:
Change the configuration of the Config API or blocking application to use a different port, or stop the application
blocking the port.

The Config API SSL certificate has expired.
Error Type:
Warning

The Config API SSL certificate is self-signed.
Error Type:
Warning

Configuration API started without SSL on port <port number>.
Error Type:
Informational

Configuration API started with SSL on port <port number>.
Error Type:
Informational

The <name> device driver was not found or could not be loaded.
Error Type:
Error

Possible Cause:

www. ptc.com

87

Kepware Edge

1. If the project has been moved from one PC to another, the required drivers may have not been installed yet.

2. The specified driver may have been removed from the installed server.

3. The specified driver may be the wrong version for the installed server version.

Possible Solution:

1. Re-run the server install and add the required drivers.

2. Re-run the server install and re-install the specified drivers.

3. Ensure that a driver has not been placed in the installed server directory (which is out of sync with the
server version).

Unable to load the '<name>' driver because more than one copy exists ('<name>'
and '<name>'). Remove the conflicting driver and restart the application.
Error Type:
Error

Possible Cause:
Multiple versions of the driver DLL exist in the driver's folder in the server.

Possible Solution:

1. Re-run the server install and re-install the specified drivers.

2. Contact Technical support and verify the correct version. Remove the driver that is invalid and restart the
server and load the project.

Invalid project file.
Error Type:
Error

Unable to add channel due to driver-level failure.
Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Unable to add device due to driver-level failure.
Error Type:
Error

Possible Cause:
Attempt failed due to issues in the driver.

Possible Solution:
Refer to the additional messages about the driver error and correct related issues.

Version mismatch.
Error Type:

www. ptc.com

88

Kepware Edge

Error

Unable to load project <name>:
Error Type:
Error

Possible Cause:

1. The project was created using a version of the server that contained a feature or configuration that has
been obsoleted and no longer exists in the server that is trying to load it.

2. The project was created in a server version that is not compatible with the version trying to load it.

3. The project file is corrupt.

Possible Solution:
Save project as JSON(V6), remove the unsupported feature that is defined in the project file and then save and
load the updated project file into the server that is trying to load it.

 Note:
Every attempt is made to ensure backwards compatibility in the server so that projects created in older versions
may be loaded in newer versions. However, since new versions of the server and driver may have properties and
configurations that do not exist in older versions, it may not be possible to open or load an older project in a newer
version.

Unable to back up project file to '<path>' [<reason>]. The save operation has been
aborted. Verify the destination file is not locked and has read/write access. To con-
tinue to save this project without a backup, deselect the backup option under Tools
| Options | General and re-save the project.
Error Type:
Error

Possible Cause:

1. The destination file may be not locked by another application.

2. The destination file or the folder where it is located does not allow read/write access.

Possible Solution:

1. Ensure that the destination file is not locked by another application, unlock the file, or close the application.

2. Ensure that the destination file and with the folder where it is located allow read and write access.

<feature name> was not found or could not be loaded.
Error Type:
Error

Possible Cause:
The feature is not installed or is not in the expected location.

Possible Solution:
Re-run the server install and select the specified feature for installation.

Unable to save project file <name>:
Error Type:

www. ptc.com

89

Kepware Edge

Error

Device discovery has exceeded <count> maximum allowed devices. Limit the dis-
covery range and try again.
Error Type:
Error

<feature name> is required to load this project.
Error Type:
Error

Unable to load the project due to a missing object. | Object = '<object>'.
Error Type:
Error

Possible Cause:
Editing the JSON project file may have left it in an invalid state.

Possible Solution:
Revert any changes made to the JSON project file.

Invalid Model encountered while trying to load the project. | Device = '<device>'.
Error Type:
Error

Possible Cause:
The specified device has a model that is not supported in this version of the server.

Possible Solution:
Open this project with a newer version of the server.

Cannot add device. A duplicate device may already exist in this channel.
Error Type:
Error

Auto-generated tag '<tag>' already exists and will not be overwritten.
Error Type:
Warning

Possible Cause:
Although the server is regenerating tags for the tag database, it has been set not to overwrite tags that already
exist.

Possible Solution:
If this is not the desired action, change the setting of the "On Duplicate Tag" property for the device.

Unable to generate a tag database for device '<device>'. The device is not
responding.
Error Type:
Warning

Possible Cause:

www. ptc.com

90

Kepware Edge

1. The device did not respond to the communications request.

2. The specified device is not on, not connected, or in error.

Possible Solution:

1. Verify that the device is powered on and that the PC is on (so that the server can connect to it).

2. Verify that all cabling is correct.

3. Verify that the device IDs are correct.

4. Correct the device failure and retry the tag generation.

Unable to generate a tag database for device '<device>':
Error Type:
Warning

Possible Cause:
The specified device is not on, not connected, or in error.

Possible Solution:
Correct the device failure and retry the tag generation.

Auto generation produced too many overwrites, stopped posting error messages.
Error Type:
Warning

Possible Cause:

1. To keep from filling the error log, the server has stopped posting error messages on tags that cannot be
overwritten during automatic tag generation.

2. Reduce the scope of the automatic tag generation or eliminate problematic tags.

Failed to add tag '<tag>' because the address is too long. The maximum address
length is <number>.
Error Type:
Warning

Unable to use network adapter '<adapter>' on channel '<name>'. Using default net-
work adapter.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC. The server uses the default network
adapter.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:
Channel Properties - Network Interface

www. ptc.com

91

Kepware Edge

Rejecting attempt to change model type on a referenced device '<channel
device>'.
Error Type:
Warning

Validation error on '<tag>': <error>.
Error Type:
Warning

Possible Cause:
An attempt was made to set invalid parameters on the specified tag.

Unable to load driver DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified driver could not be loaded when the project started.

Possible Solution:

1. Verify the version of the installed driver. Check the website to see if the driver version is correct for the
server version installed.

2. If the driver corrupted, delete it and re-run the server install.

 Note:
This problem is usually due to corrupted driver DLLs or drivers that are not compatible with the server version.

Validation error on '<tag>': Invalid scaling parameters.
Error Type:
Warning

Possible Cause:
An attempt was made to set invalid scaling parameters on the specified tag.

 See Also:
Tag Properties - Scaling

Device '<device>' has been automatically demoted.
Error Type:
Warning

Possible Cause:
Communications with the specified device failed. The device has been demoted from the poll cycle.

Possible Solution:

1. If the device fails to reconnect, investigate the reason behind the communications loss and correct it.

2. To stop the device from being demoted, disable Auto-Demotion.

 See Also:
Auto-Demotion

www. ptc.com

92

Kepware Edge

Unable to load plug-in DLL '<name>'.
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

 Note:
This problem is usually due to corrupted plug-in DLLs or plug-ins that are not compatible with the server version.

Unable to load driver DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

Unable to load plug-in DLL '<name>'. Reason:
Error Type:
Warning

Possible Cause:
The specified plug-in could not be loaded when the project started.

Possible Solution:

1. Verify the version of the plug-in installed. Check the website to see if the plug-in version is compatible with
the server installed. If not, correct the server or re-run the server install.

2. If the plug-in is corrupt, delete it and then re-run the server install.

The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
Error Type:
Warning

Possible Cause:
The network adapter specified in the project does not exist on this PC.

Possible Solution:
Select the network adapter to use for the PC and save the project.

 See Also:

www. ptc.com

93

Kepware Edge

Channel Properties - Network Interface

No tags were created by the tag generation request. See the event log for more
information.
Error Type:
Warning

Possible Cause:
The driver produced no tag information but declined to provide a reason why.

Possible Solution:
Event log may contain information that will help troubleshoot the issue.

<Product> device driver loaded successfully.
Error Type:
Informational

Starting <name> device driver.
Error Type:
Informational

Stopping <name> device driver.
Error Type:
Informational

<Product> device driver unloaded from memory.
Error Type:
Informational

Simulation mode is enabled on device '<device>'.
Error Type:
Informational

Simulation mode is disabled on device '<device>'.
Error Type:
Informational

Attempting to automatically generate tags for device '<device>'.
Error Type:
Informational

Completed automatic tag generation for device '<device>'.
Error Type:
Informational

A client application has enabled auto-demotion on device '<device>'.
Error Type:
Informational

Possible Cause:
A client application connected to the server has enabled or disabled Auto Demotion on the specified device.

www. ptc.com

94

Kepware Edge

Possible Solution:
To restrict the client application from doing this, disable its ability to write to system-level tags through the User
Manager.

 See Also:
User Manager

Data collection is enabled on device '<device>'.
Error Type:
Informational

Data collection is disabled on device '<device>'.
Error Type:
Informational

Object type '<name>' not allowed in project.
Error Type:
Informational

Created backup of project '<name>' to '<path>'.
Error Type:
Informational

Device '<device>' has been auto-promoted to determine if communications can be
re-established.
Error Type:
Informational

Failed to load library: <name>.
Error Type:
Informational

Failed to read build manifest resource: <name>.
Error Type:
Informational

A client application has disabled auto-demotion on device '<device>'.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>.
Error Type:
Informational

Tag generation results for device '<device>'. | Tags created = <count>, Tags over-
written = <count>.
Error Type:
Informational

www. ptc.com

95

Kepware Edge

Tag generation results for device '<device>'. | Tags created = <count>, Tags not
overwritten = <count>.
Error Type:
Informational

Access to object denied. | User = '<account>', Object = '<object path>', Permission
=
Error Type:
Security

User moved from user group. | User = '<name>', Old group = '<name>', New group
= '<name>'.
Error Type:
Security

User group has been created. | Group = '<name>'.
Error Type:
Security

User added to user group. | User = '<name>', Group = '<name>'.
Error Type:
Security

User group has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

Permissions definition has changed on user group. | Group = '<name>'.
Error Type:
Security

User has been renamed. | Old name = '<name>', New name = '<name>'.
Error Type:
Security

User has been disabled. | User = '<name>'.
Error Type:
Security

User group has been disabled. | Group = '<name>'.
Error Type:
Security

User has been enabled. | User = '<name>'.
Error Type:
Security

User group has been enabled. | Group = '<name>'.
Error Type:

www. ptc.com

96

Kepware Edge

Security

Password for user has been changed. | User = '<name>'.
Error Type:
Security

The endpoint '<url>' has been added to the UA Server.
Error Type:
Security

The endpoint '<url>' has been removed from the UA Server.
Error Type:
Security

The endpoint '<url>' has been disabled.
Error Type:
Security

The endpoint '<url>' has been enabled.
Error Type:
Security

User has been deleted. | User = '<name>'.
Error Type:
Security

Group has been deleted. | Group = '<name>'.
Error Type:
Security

Connection to ThingWorx failed. | Platform = <host:port resource>, error =
<reason>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform could not be established.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryption.

Error adding item. | Item name = '<item name>'.
Error Type:
Error

Possible Cause:
The item <TagName> could not be added to the server for scanning.

www. ptc.com

97

Kepware Edge

Possible Solution:

1. Verify that the tag exists on a valid channel and device.

2. Verify that the tag may be read using another client, such as the QuickClient.

Failed to trigger the autobind complete event on the platform.
Error Type:
Error

Possible Cause:
The ThingWorx connection was terminated before the autobind process completed.

Possible Solution:
Wait to reinitialize or alter the ThingWorx project properties until after all autobinds have completed.

Connection to ThingWorx failed for an unknown reason. | Platform = <host:port
resource>, error = <error>.
Error Type:
Error

Possible Cause:
The connection to the ThingWorx Platform failed.

Possible Solution:

1. Verify that the host, port, resource, and application key are all valid and correct.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

3. Verify that the proper certificate settings are enabled if using a self-signed certificate or no encryption.

4. Contact technical support with the error code and an application report.

One or more value change updates lost due to insufficient space in the connection
buffer. | Number of lost updates = <count>.
Error Type:
Error

Possible Cause:
Data is being dropped because the ThingWorx Platform is not available or too much data is being collected by the
instance.

Possible Solution:

1. Verify that some data is updating on the ThingWorx Platform and that the platform is reachable.

2. Slow down the tag scan rate to move less data into the ThingWorx Platform.

Item failed to publish; multidimensional arrays are not supported. | Item name =
'%s'.
Error Type:
Error

Possible Cause:
The item <ItemName> references a tag whose data is a multidimensional array.

www. ptc.com

98

Kepware Edge

Possible Solution:
Modify the item to reference a tag with a supported datatype.

Store and Forward datastore unable to store data due to full disk.
Error Type:
Error

Possible Cause:
The disk being used to store updates has been filled to within 500 MiB.

Possible Solution:

1. Free up some space on the disk being used to store updates.

2. Delete the data stored in the datastore using the _DeleteStoredData system tag.

3. Replace the disk being used to store data with a larger disk.

Store and Forward datastore size limit reached.
Error Type:
Error

Possible Cause:
The ThingWorx Interface is not able to send updates to the platform as fast as the updates are being generated.

Possible Solution:

1. Verify that the ThingWorx Interface can connect to the ThingWorx Platform.

2. Reduce the rate of updates being collected by the ThingWorx Interface.

Connection to ThingWorx was closed. | Platform = <host:port resource>.
Error Type:
Warning

Possible Cause:
The connection was closed. The service was stopped or the interface is no longer able to reach the platform.

Possible Solution:

1. Verify that the native interface is enabled in the project properties.

2. Verify that the host machine can reach the Composer on the ThingWorx Platform.

Failed to autobind property. | Name = '<property name>'.
Error Type:
Warning

Possible Cause:
A property with this name already exists under this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

www. ptc.com

99

Kepware Edge

Failed to restart Thing. | Name = '<thing name>'.
Error Type:
Warning

Possible Cause:
When the AddItem service is complete, a restart service is called on the Thing. This allows the Composer to visu-
alize the changes. Data changes are sent to the platform even when this error has been presented.

Possible Solution:
Relaunch the Composer to restart the Thing.

Write to property failed. | Property name = '<name>', reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and con-
sistent.

2. Verify that the value to be written is within the appropriate range for the data type.

ThingWorx request to add item failed. The item was already added. | Item name =
'<name>'.
Error Type:
Warning

Possible Cause:
The tag had already been added to this Thing.

Possible Solution:

1. Check the property to see if data is current.

2. If data is not current, delete the property under the Thing and run the AddItem service once again.

ThingWorx request to remove item failed. The item doesn't exist. | Item name =
'<name>'.
Error Type:
Warning

Possible Cause:
The tag was already removed from the Thing or no such tag exists.

Possible Solution:
If the tag still shows under the properties of the Thing, delete that property in the ThingWorx Composer.

The server is configured to send an update for every scan, but the push type of
one or more properties are set to push on value change only. | Count = <count>.
Error Type:
Warning

www. ptc.com

100

Kepware Edge

Possible Cause:
The push type in the ThingWorx Platform is set to change only for some items. This push type only updates data on
the platform when the data value changes.

Possible Solution:
To use the Send Every Scan option, set this value to Always.

The push type of one or more properties are set to never push an update to the
platform. | Count = <count>.
Error Type:
Warning

Possible Cause:
The push type in the ThingWorx Platform is set to Never for some items, which prevents any data changes from
being automatically updated on the platform.

Possible Solution:
If this is not the desired behavior, change the push type in the ThingWorx Platform.

ThingWorx request to remove an item failed. The item is bound and the force flag
is false. | Item name = '<name>'.
Error Type:
Warning

Possible Cause:
The RemoveItems service could not remove the item because it is bound to a property and the Force Flag is not set
to True.

Possible Solution:
Re-run the service, explicitly calling the ForceRemove flag as True.

Write to property failed. | Thing name = '<name>', property name = '<name>',
reason = <reason>.
Error Type:
Warning

Possible Cause:
Unable to write to a tag due to a conversion issue.

Possible Solution:

1. Verify that the data type of the tag in the server, as well as in the ThingWorx Platform, is correct and con-
sistent.

2. Verify that the value to be written is within the appropriate range for the data type.

Error pushing property updates to thing. | Thing name = '<name>'.
Error Type:
Warning

Possible Cause:
Property updates for the named thing were not successfully published to the platform.

Possible Solution:

www. ptc.com

101

Kepware Edge

Check the platform's log for an indication of why property updates are failing, such as a permissions issue.

Unable to connect or attach to Store and Forward datastore. Using in-memory
store. | In-memory store size (updates) = <count>.
Error Type:
Warning

Possible Cause:

1. The Store and Forward service is not running.

2. The service does not have access to the specified storage directory.

3. There is a port conflict that prevents the Store and Forward service from accepting connections.

Possible Solution:

1. Restart the server runtime.

2. Verify the specified storage location is accessible by the Store and Forward service.

3. Resolve the port conflict by configuring a new port for Store and Forward in the server administration.

Store and Forward datastore reset due to file IO error or datastore corruption.
Error Type:
Warning

Possible Cause:

1. The datastore was corrupted by a user or another program.

2. The datastore was corrupted by a hardware error.

3. An error occurred while attempting to read data from disk, possibly due to a hardware issue.

Possible Solution:

1. Use User Access Controls to limit the which users have access to the datastore location.

2. Move the datastore to another disk.

Unable to apply settings change initiated by the Platform. Permission Denied. |
User = '<user name>'.
Error Type:
Warning

Possible Cause:
The user group "ThingWorx Interface Users" has the permissions "Project Modification:Servermain.Project" set to
"Deny".

Possible Solution:
Set the permission "Project Modification:Servermain.Project" on the user group "ThingWorx Interface Users" to
"Allow".

Configuration Transfer to ThingWorx Platform failed.
Error Type:
Warning

www. ptc.com

102

Kepware Edge

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Failed to delete stored updates in the Store and Forward datastore.
Error Type:
Warning

Possible Cause:
A hardware or operating system error prevented the operation from completing.

Possible Solution:
Restart the machine and try again.

Configuration Transfer from ThingWorx Platform failed.
Error Type:
Warning

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
Error Type:
Warning

Possible Cause:

1. Refer to reason text for more information.

2. The runtime project is locked because a user is editing it.

3. The ThingWorx Interface user account does not have sufficient privileges to perform the operation.

Check that your Application Key is properly formatted and valid.
Error Type:
Warning

Possible Cause:
The connection to the ThingWorx Platform failed due to bad authorization.

Possible Solution:

1. Verify that application key has not expired.

2. Verify that application key is properly formatted.

3. Verify that application key was inputted correctly.

www. ptc.com

103

Kepware Edge

The maximum number of configured Industrial Things has been reached, count =
<number>. Consider increasing the value of the Max Thing Count.
Error Type:
Warning

Possible Cause:
Max Thing Count is configured too low.

Possible Solution:
Verify that the Max Thing Count property is greater than the configured number of bound things.

The maximum number of updates has been reached, count = <count>.
Error Type:
Warning

Possible Cause:

1. Max Updates Per Publish is too high.

2. Too many updates are being sent at once to the platform.

Possible Solution:

1. Reduce Max Updates Per Publish to a value below the count displayed in the message.

2. Reduce the scan rate of properties being sent to Thingworx.

A publish to Thingworx has timed out.
Error Type:
Warning

Possible Cause:

1. Too many updates are being sent at once to the platform.

2. Network congestion has caused a timeout.

Possible Solution:

1. Reduce Max Updates Per Publish.

2. Reduce the scan rate of properties being sent to Thingworx.

Connected to ThingWorx. | Platform = <host:port resource>, Thing name =
'<name>'.
Error Type:
Informational

Possible Cause:
A connection was made to the ThingWorx Platform.

Reinitializing ThingWorx connection due to a project settings change initiated from
the platform.
Error Type:
Informational

www. ptc.com

104

Kepware Edge

Possible Cause:
When using the SetConfiguration service, this message informs an operator viewing the server event log that a
change was made.

Dropping pending autobinds due to interface shutdown or reinitialize. | Count =
<count>.
Error Type:
Informational

Possible Cause:
A server shutdown or initialization was called while auto-binding was in process from an AddItems service call.

Possible Solution:
Any Items not auto bound need to be manually created and bound in the ThingWorx Composer.

Serviced one or more autobind requests. | Count = <count>.
Error Type:
Informational

Possible Cause:
Part of the AddItems service is the autobind action. This action may take more time than the actual adding of the
item. This message alerts the operator to how many items have been autobound.

Reinitializing ThingWorx connection due to a project settings change initiated from
the Configuration API.
Error Type:
Informational

Possible Cause:
When using the Configuration API, this message informs an operator viewing the server event log that a change
was made.

Resumed pushing property updates to thing: the error condition was resolved. |
Thing name = '<name>'.
Error Type:
Informational

Configuration transfer from ThingWorx initiated.
Error Type:
Informational

Configuration transfer from ThingWorx aborted.
Error Type:
Informational

Successfully deleted stored data from the Store and Forward datastore.
Error Type:
Informational

Possible Cause:
A client used the _DeleteStoredData system tag to delete data cached for ThingWorx Interface in the Store and For-
ward datastore.

www. ptc.com

105

Kepware Edge

Store and Forward mode changed. | Forward Mode = '<mode>'.
Error Type:
Informational

Possible Cause:
The _ForwardMode system tag was written to by a connected client and the value of the write caused a settings
change.

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore
location = '<location>'.
Error Type:
Informational

Possible Cause:
ThingWorx Native Interface is configured to use Store and Forward.

Missing server instance certificate '<cert location>'. Please use the OPC UA Con-
figuration Manager to reissue the certificate.
Error Type:
Error

Failed to import server instance cert: '<cert location>'. Please use the OPC UA
Configuration Manager to reissue the certificate.
Error Type:
Error

Possible Cause:

1. The file containing the server instance certificate does not exist or is inaccessible.

2. Certificate decryption failed.

Possible Solution:

1. Verify the file references a valid instance certificate to which the user has permissions.

2. Import a new certificate.

3. Re-issue the certificate to refresh the encryption.

The UA server certificate is expired. Please use the OPC UA Configuration Man-
ager to reissue the certificate.
Error Type:
Error

Possible Cause:
The validity period of the certificate is before the current system date.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

www. ptc.com

106

Kepware Edge

A socket error occurred listening for client connections. | Endpoint URL = '<end-
point URL>', Error = <error code>, Details = '<description>'.
Error Type:
Error

Possible Cause:
The endpoint socket returned an error while listening for client connections.

Possible Solution:
Note the details in the error message to diagnose the problem.

The UA Server failed to register with the UA Discovery Server. | Endpoint URL:
'<endpoint url>'.
Error Type:
Error

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to register the UA Server with the UA Discovery Server could not complete in the expected
manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

Unable to start the UA server due to certificate load failure.
Error Type:
Error

Possible Cause:

1. The UA Server application instance certificate validity period occurs before the current system date.

2. The file containing the server instance certificate does not exist or is inaccessible.

3. Certificate decryption failed.

Possible Solution:

1. Import a non-expired certificate.

2. Re-issue the certificate to generate a new non-expired certificate.

3. Verify the file references a valid instance certificate to which the user has permissions.

4. Re-issue the certificate to refresh the encryption.

Failed to load the UA Server endpoint configuration.
Error Type:
Error

Possible Cause:
The endpoint configuration file is corrupt or doesn't exist.

Possible Solution:
Re-configure the UA Endpoint configuration and reinitialize the server.

www. ptc.com

107

Kepware Edge

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL:
'<endpoint url>'.
Error Type:
Warning

Possible Cause:

1. The UA server endpoint URL and the security policy are not supported in the UA Discovery Server.

2. The attempt to unregister the UA Server from the UA Discovery Server could not complete in the expected
manner.

Possible Solution:
Verify the UA Server endpoint URL and the security policy with the UA Discovery Server endpoints.

The UA Server failed to initialize an endpoint configuration. | Endpoint Name:
'<name>'.
Error Type:
Warning

Possible Cause:
The endpoint is configured to use a network adapter that does not have a valid ipv4 address.

Possible Solution:

1. Re-configure the network adapter property with an adapter that has a valid ipv4 address.

2. Restart the runtime to refresh the endpoint configurations.

The UA Server successfully registered with the UA Discovery Server. | Endpoint
URL: '<endpoint url>'.
Error Type:
Informational

The UA Server successfully unregistered from the UA Discovery Server. | End-
point URL: '<endpoint url>'.
Error Type:
Informational

Com port is in use by another application. | Port = '<port>'.
Error Type:
Error

Possible Cause:
The serial port assigned to a device is being used by another application.

Possible Solution:

1. Verify that the correct port has been assigned to the channel.

2. Verify that only one copy of the current project is running.

www. ptc.com

108

Kepware Edge

Unable to configure com port with specified parameters. | Port = COM<number>,
OS error = <error>.
Error Type:
Error

Possible Cause:
The serial parameters for the specified COM port are not valid.

Possible Solution:
Verify the serial parameters and make any necessary changes.

Driver failed to initialize.
Error Type:
Error

Unable to allocate thread resource. Please check the memory usage of the applic-
ation.
Error Type:
Error

Possible Cause:
The server process has no resources available to create new threads.

Possible Solution:
Each tag group consumes a thread. The typical limit for a single process is about 2000 threads. Reduce the num-
ber of tag groups in the project.

Com port does not exist. | Port = '<port>'.
Error Type:
Error

Possible Cause:
The specified COM port is not present on the target computer.

Possible Solution:
Verify that the proper COM port is selected.

Error opening com port. | Port = '<port>', OS error = <error>.
Error Type:
Error

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target computer.

Possible Solution:
Verify that the COM port is functional and may be accessed by other applications.

Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
Error Type:
Error

Possible Cause:

www. ptc.com

109

Kepware Edge

Since the specified network adapter cannot be located in the system device list, it cannot be bound to for com-
munications. This can occur when a project is moved from one PC to another (and when the project specifies a net-
work adapter rather than using the default). The server reverts to the default adapter.

Possible Solution:
Change the Network Adapter property to Default (or select a new adapter), save the project, and retry.

Winsock shut down failed. | OS error = <error>.
Error Type:
Error

Winsock initialization failed. | OS error = <error>.
Error Type:
Error

Possible Solution:

1. The underlying network subsystem is not ready for network communication. Wait a few seconds and restart
the driver.

2. The limit on the number of tasks supported by the Windows Sockets implementation has been reached.
Close one or more applications that may be using Winsock and restart the driver.

Winsock V1.1 or higher must be installed to use this driver.
Error Type:
Error

Possible Cause:
The version number of the Winsock DLL found on the system is older than 1.1.

Possible Solution:
Upgrade Winsock to version 1.1 or higher.

Socket error occurred binding to local port. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Error

Device is not responding.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communication parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

4. The response from the device took longer to receive than allowed by the Request Timeout device setting.

Possible Solution:

www. ptc.com

110

Kepware Edge

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Verify that the device ID for the named device matches that of the actual device.

4. Increase the Request Timeout setting to allow the entire response to be handled.

Device is not responding. | ID = '<device>'.
Error Type:
Warning

Possible Cause:

1. The network connection between the device and the host PC is broken.

2. The communication parameters configured for the device and driver do not match.

3. The response from the device took longer to receive than allowed by the Request Timeout device setting.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communications parameters match those of the device.

3. Increase the Request Timeout setting to allow the entire response to be handled.

Serial communications error on channel. | Error mask = <mask>.
Error Type:
Warning

Possible Cause:

1. The serial connection between the device and the host PC is broken.

2. The communications parameters for the serial connection are incorrect.

Possible Solution:

1. Investigate the error mask code and the related information.

2. Verify the cabling between the PC and the PLC device.

3. Verify that the specified communication parameters match those of the device.

 See Also:
Error Mask Codes

Invalid array size detected writing to tag <device name>.<address>.
Error Type:
Warning

Possible Cause:
Client trying to write before being updated.

Possible Solution:
Perform a read on the array before attempting a write.

www. ptc.com

111

Kepware Edge

Unable to write to address on device. | Address = '<address>'.
Error Type:
Warning

Possible Cause:

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Items on this page may not be changed while the driver is processing tags.
Error Type:
Warning

Possible Cause:
An attempt was made to change a channel or device configuration while data clients were connected to the server
and receiving data from the channel/device.

Possible Solution:
Disconnect all data clients from the server before making changes.

Specified address is not valid on device. | Invalid address = '<address>'.
Error Type:
Warning

Possible Cause:
A tag address has been assigned an invalid address.

Possible Solution:
Modify the requested address in the client application.

Address '<address>' is not valid on device '<name>'.
Error Type:
Warning

This property may not be changed while the driver is processing tags.
Error Type:
Warning

Unable to write to address '<address>' on device '<name>'.
Error Type:
Warning

Possible Cause:

www. ptc.com

112

Kepware Edge

1. The connection between the device and the host PC is broken.

2. The communications parameters for the connection are incorrect.

3. The named device may have been assigned an incorrect device ID.

Possible Solution:

1. Verify the cabling between the PC and the PLC device.

2. Verify that the specified communication parameters match those of the device.

3. Verify that the device ID given to the named device matches that of the actual device.

Socket error occurred connecting. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred receiving data. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred sending data. | Error = <error>, Details = '<information>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred checking for readability. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:

www. ptc.com

113

Kepware Edge

Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

Socket error occurred checking for writability. | Error = <error>, Details = '<inform-
ation>'.
Error Type:
Warning

Possible Cause:
Communication with the device failed during the specified socket operation.

Possible Solution:
Follow the guidance in the error and details, which explain why the error occurred and suggest a remedy when
appropriate.

%s |
Error Type:
Informational

<Name> Device Driver '<name>'
Error Type:
Informational

Could not load item state data. Reason: <reason>.
Error Type:
Warning

Possible Cause:

1. The driver could not load the item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion, previous
state data is lost.

Could not save item state data. Reason: <reason>.
Error Type:
Warning

Possible Cause:

1. The driver could not save the item state data for the specified reason.

2. Corrupt data files.

3. Inadequate disk space.

4. Invalid drive in path.

5. Deleted or renamed data files.

www. ptc.com

114

Kepware Edge

Possible Solution:
Solution depends upon the reason given in the error message. In the case of file corruption or deletion, previous
state data is lost.

Feature '<name>' is not licensed and cannot be used.
Error Type:
Error

Possible Cause:

1. The named feature of the product has not been purchased and licensed.

2. The product license has been removed or trusted storage has become corrupted.

Possible Solution:

1. Download or install the software feature and purchase license.

2. Consult the Licensing User Manual for instructions on activating emergency licenses.

3. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Failed to load the license interface, possibly due to a missing third-party depend-
ency. Run in Time Limited mode only.
Error Type:
Error

Possible Cause:
One or more required OEM licensing component is missing the system.

Possible Solution:
Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Failed to initialize licensing. Unable to load the demo file license (Error %1!x!).
Error Type:
Error

Possible Cause:
The demo license file is not valid

Failed to initialize licensing. Unable to initialize the licensing identity (Error %1!x!).
Error Type:
Error

Failed to initialize licensing. Unable to initialize trusted storage (Error %1!x!).
Error Type:
Error

Possible Cause:

www. ptc.com

115

Kepware Edge

1. The system identifier has changed

2. Trusted storage has been tampered with

Failed to initialize licensing. Unable to initialize the licensing publisher (Error
%1!x!).
Error Type:
Error

Failed to initialize licensing. Unable to establish system time interface (Error
%1!x!).
Error Type:
Error

Failed to initialize licensing (Error <error code>)
Error Type:
Error

Failed to process the activation response from the license server (Error: %x, Pro-
cess Codes: %s, Message Codes: %s)
Error Type:
Error

Failed to create an activation request (Error %x)
Error Type:
Error

Request failed with license server.
Error Type:
Error

Time Limited mode has expired.
Error Type:
Warning

Possible Cause:

1. The product has not been purchased and licensed during Time Limited mode.

2. The server started in Time Limited mode with the specified time remaining in Time Limited mode.

Possible Solution:

1. If evaluating the server, no action needs to be taken.

2. If this is a production machine, activate the product licenses for the installed components before Time Lim-
ited mode expires.

3. Purchase a license for all features of the product that will be used.

4. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

www. ptc.com

116

Kepware Edge

Maximum device count exceeded for the lite version '<number>' license. Edit pro-
ject and restart the server.
Error Type:
Warning

Possible Cause:
The specified driver was activated with a lite license, which limits the number of devices that can be configured.

Possible Solution:

1. Verify the number of devices authorized by the license and correct the project design to reduce the device
count.

2. If more devices are needed or the lite activation is incorrect, contact a sales representative about upgrading
the license to support more devices.

 See Also:
License Utility Help

Maximum runtime tag count exceeded for the lite version '<number>' license. Edit
client project and restart the server.
Error Type:
Warning

Possible Cause:
The specified driver was activated with a lite license, which limits the number of tags that can be configured.

Possible Solution:

1. Verify the number of tags authorized by the license and correct the project design to reduce the tag count.

2. If more tags are needed or if the lite activation is incorrect, contact a sales representative about upgrading
the license to support more tags.

 See Also:
License Utility Help

Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'.
Error Type:
Warning

Possible Cause:
The installed feature license limits the number of items of the specified type that can be configured.

Possible Solution:

1. Contact customer solutions to determine what object type count should be reduced to remain within the lim-
its of the license.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

www. ptc.com

117

Kepware Edge

<Object type name> limit of <maximum count> exceeded on feature '<name>'.
Error Type:
Warning

Possible Cause:
The installed feature license limits the number of items of the specified type that can be configured.

Possible Solution:

1. Verify the number authorized by the license and correct the project design to use only that number of items.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

The FlexNet Licensing Service must be enabled to process licenses. Failure to
enable the service results in Time Limited mode.
Error Type:
Warning

Possible Cause:
An attempt was made to verify the license, but the FlexNet Licensing Service is disabled.

Possible Solution:
Use the Windows Service Control Manager to enable the FlexNet Licensing Service, which requires a runtime
restart.

 See Also:
License Utility Help

The <name> feature license has been removed. The server will enter Time Limited
mode unless the license is restored before the grace period expires.
Error Type:
Warning

Possible Cause:
The feature license has been deleted, moved to another machine, the hardware key has been removed, or trusted
storage has been corrupted.

Possible Solution:

1. Consult the Licensing User Manual for instructions on activating an emergency licenses.

2. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

License for feature <name> cannot be accessed [error=<code>] and must be react-
ivated.
Error Type:
Warning

Possible Cause:

www. ptc.com

118

Kepware Edge

Trusted storage has been corrupted, possibly due to a system update.

Possible Solution:

1. Consult the Licensing User Manual for instructions on activating an emergency licenses.

2. Contact a sales or support representative for assistance.

 See Also:
License Utility Help

Feature %1 is time limited and will expire on %2 at %3.
Error Type:
Warning

Feature %1 is time limited and will expire on %2 at %3.
Error Type:
Warning

Object count limit has been exceeded on feature <name>. Time limited usage will
expire at <date/time>.
Error Type:
Warning

Feature count limit exceeded on <name>. Time limited usage will expire at <date/-
time>.
Error Type:
Warning

Time limited usage period on feature <name> has expired.
Error Type:
Warning

Failed to obtain licenses from the license server.
Error Type:
Warning

The license for this product has expired and will soon stop functioning. Please con-
tact your sales representative to renew the subscription.
Error Type:
Warning

Licensing for this system is currently provided by a file-based license.
Error Type:
Warning

Failed to connect to the license server.
Error Type:
Warning

Possible Cause:

www. ptc.com

119

Kepware Edge

1. The license server connection parameters are incorrect.

2. The license server is not running or has been disabled.

3. The TLS connection has not been properly configured.

Possible Solution:

1. Verify that the license server connection parameters are correct.

2. Check that the license server is running and that its state is not set to 'suspended'.

3. Verify that the license server CA certificate has been imported.

Failed to return licenses to the LLS.
Error Type:
Warning

Maximum driver count exceeded for the lite version '<name>' driver license. Edit
project and restart the server.
Error Type:
Informational

Possible Cause:
The specified driver was activated with a lite license, which limits the number of drivers that can be configured.

Possible Solution:

1. Verify the number of drivers authorized by the license. Correct the project to use only that number of
drivers.

2. If more drivers are needed or the lite activation is incorrect, contact a sales representative about upgrading
the license to support more drivers.

 See Also:

1. Event Log (in server help)

2. License Utility Help

Connecting to the license server.
Error Type:
Informational

Successful communication with the license server. Renew interval established at
%d seconds.
Error Type:
Informational

License synchronization required. Initiating request...
Error Type:
Informational

Performing initial license request to the license server.
Error Type:

www. ptc.com

120

Kepware Edge

Informational

Connected to license server, no changes.
Error Type:
Informational

Requesting return of all borrowed licenses...
Error Type:
Informational

Cannot add item. Requested count of <number> would exceed license limit of
<maximum count>.
Error Type:
Informational

Possible Cause:
The product license limits the number of items that can be configured.

Possible Solution:

1. Verify the number authorized by the license and correct the project to use only that number of items.

2. If more items are needed, contact a sales representative about upgrading the license.

 See Also:
License Utility Help

The version of component <name> (<version>) is required to match that of com-
ponent <name> (<version>).
Error Type:
Informational

Possible Cause:
Two installed components have an interdependency that requires the versions to match.

Possible Solution:
Verify component versions and download or install the matching versions of the components.

 See Also:
License Utility Help

Maximum channel count exceeded for the lite version '<name>' driver license. Edit
project and restart the server.
Error Type:
Informational

Possible Cause:
The specified driver was activated with a lite license, which limits the number of channels that can be configured.

Possible Solution:

1. Verify the number of channels authorized by the license. Correct the project to use only that number of
channels.

www. ptc.com

121

Kepware Edge

2. If more channels are needed or the lite activation is incorrect, contact a sales representative about upgrad-
ing the license to support more channels.

 See Also:

1. Event Log (in server help)

2. License Utility Help

%s is now licensed.
Error Type:
Informational

www. ptc.com

122

Kepware Edge

Index
%

%s | 114

%s is now licensed. 122

<

<feature name> is required to load this project. 90

<feature name> was not found or could not be loaded. 89

<Name> Device Driver '<name>' 114

<Object type name> limit of <maximum count> exceeded on feature '<name>'. 118

<Product> device driver loaded successfully. 94

<Product> device driver unloaded from memory. 94

A

A client application has disabled auto-demotion on device '<device>'. 95

A client application has enabled auto-demotion on device '<device>'. 94

A publish to Thingworx has timed out. 104

A socket error occurred listening for client connections. | Endpoint URL = '<endpoint URL>', Error = <error
code>, Details = '<description>'. 107

About Endpoints 20

Access to object denied. | User = '<account>', Object = '<object path>', Permission = 96

ActiveTagCount 29

Address '<address>' is not valid on device '<name>'. 112

Administrator 18

Alias Name 40

Alias Properties 40

Anonymous 65

API Command 56

APPKEY 25

Application Data 15

Architecture 11, 55

Attempting to automatically generate tags for device '<device>'. 94

authentication 41

Authentication 19, 85

Authorization 18

Auto-generated tag '<tag>' already exists and will not be overwritten. 90

Auto generation produced too many overwrites, stopped posting error messages. 91

Automatic Tag Generation 59

www. ptc.com

123

Kepware Edge

B

Basic256Sha256 86

BCD 37

Boolean 37

Byte 38

C

cacerts 23

Cannot add device. A duplicate device may already exist in this channel. 90

Cannot add item. Requested count of <number> would exceed license limit of <maximum count>. 121

certificate 23

Certificates 17

Char 38

Check that your Application Key is properly formatted and valid. 103

Child Endpoints 77

Clamp 39

ClientCount 29

Com port does not exist. | Port = '<port>'. 109

Com port is in use by another application. | Port = '<port>'. 108

Command line 10

Command Line Interface 17

Command line interfaces 10

Completed automatic tag generation for device '<device>'. 94

Components and Concepts 26

Concurrent Clients 41

Configuration API Service 41

Configuration API Service — Configuring Licensing Server 81

Configuration API started with SSL on port <port number>. 87

Configuration API started without SSL on port <port number>. 87

Configuration transfer from ThingWorx aborted. 105

Configuration transfer from ThingWorx initiated. 105

Configuration Transfer from ThingWorx Platform failed. 103

Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>' 103

Configuration Transfer to ThingWorx Platform failed. 102

Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>' 103

Configuring User Group Project Permissions 80

Connected to license server, no changes. 121

Connected to ThingWorx. | Platform = <host
port resource>, Thing name = '<name>'. 104

Connecting to the license server. 120

Connecting with an OPC UA Client with UaExpert 85

Connection failed. Unable to bind to adapter. | Adapter = '<name>'. 109

www. ptc.com

124

Kepware Edge

Connection to ThingWorx failed for an unknown reason. | Platform = <host
port resource>, error = <error>. 98

Connection to ThingWorx failed. | Platform = <host
port resource>, error = <reason>. 97

Connection to ThingWorx was closed. | Platform = <host
port resource>. 99

Connectivity 19, 23

Content Retrieval 43

Could not load item state data. Reason
<reason>. 114

Could not save item state data. Reason
<reason>. 114

Create MQTT Agent 22

Create MQTT Agent Tag 22

Created backup of project '<name>' to '<path>'. 95

Creating a Channel 66

Creating a Device 69

Creating a Tag 70

Creating a UA Endpoint 84

Creating a User 79

Creating a User Group 79

Credentials 65

cURL 10

Curl 66

D

Data 51

Data collection is disabled on device '<device>'. 95

Data collection is enabled on device '<device>'. 95

Date 29

DateTime 29

DateTimeLocal 29

Default 15

DELETE 68, 70, 73, 75

Delete MQTT Agent 22

Demo License 15

Device '<device>' has been auto-promoted to determine if communications can be re-established. 95

Device '<device>' has been automatically demoted. 92

Device discovery has exceeded <count> maximum allowed devices. Limit the discovery range and try
again. 90

Device is not responding. 110

Device is not responding. | ID = '<device>'. 111

Directory 15

Documentation Endpoint 19

Documentation Endpoints 19

www. ptc.com

125

Kepware Edge

Double 38

Driver failed to initialize. 109

Dropping pending autobinds due to interface shutdown or reinitialize. | Count = <count>. 105

DWord 38

Dynamic Tags 37

E

edge_admin 17

Enable 85

Endpoint 18, 82

Endpoint Mapping 19

Error adding item. | Item name = '<item name>'. 97

Error opening com port. | Port = '<port>', OS error = <error>. 109

Error pushing property updates to thing. | Thing name = '<name>'. 101

Evaluation 15

Event Log Messages 87

F

Failed to add tag '<tag>' because the address is too long. The maximum address length is <number>. 91

Failed to autobind property. | Name = '<property name>'. 99

Failed to connect to the license server. 119

Failed to create an activation request (Error %x) 116

Failed to delete stored updates in the Store and Forward datastore. 103

Failed to import server instance cert
'<cert location>'. Please use the OPC UA Configuration Manager to reissue the certificate. 106

Failed to initialize licensing (Error <error code>) 116

Failed to initialize licensing. Unable to establish system time interface (Error %1!x!). 116

Failed to initialize licensing. Unable to initialize the licensing identity (Error %1!x!). 115

Failed to initialize licensing. Unable to initialize the licensing publisher (Error %1!x!). 116

Failed to initialize licensing. Unable to initialize trusted storage (Error %1!x!). 115

Failed to initialize licensing. Unable to load the demo file license (Error %1!x!). 115

Failed to load library
<name>. 95

Failed to load the license interface, possibly due to a missing third-party dependency. Run in Time Limited
mode only. 115

Failed to load the UA Server endpoint configuration. 107

Failed to obtain licenses from the license server. 119

Failed to process the activation response from the license server (Error
%x, Process Codes

%s, Message Codes
%s) 116

Failed to read build manifest resource
<name>. 95

Failed to restart Thing. | Name = '<thing name>'. 100

www. ptc.com

126

Kepware Edge

Failed to return licenses to the LLS. 120

Failed to trigger the autobind complete event on the platform. 98

Feature '<name>' is not licensed and cannot be used. 115

Feature %1 is time limited and will expire on %2 at %3. 119

Feature count limit exceeded on <name>. Time limited usage will expire at <date/time>. 119

Filtering 49

Float 38

FORCE_UPDATE 21

G

GET Request URI 43

Getting Started 18

Group has been deleted. | Group = '<name>'. 97

H

Health Status Endpoint 20

Health Status Endpoints 20

Hierarchy 53

HOSTNAME 25

HTTP 41

HTTPS 41

Human Machine Interface (HMI) 23

I

Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastore location = '<location>'. 106

Insomnia 66

install 11

Installation — Deploying the Container 12

Installer 11-12

installing 11-12

Instance Certificate 17

Interface 21, 23

Interfaces and Connectivity 23

Introduction 10

Invalid array size detected writing to tag <device name>.<address>. 111

Invalid Model encountered while trying to load the project. | Device = '<device>'. 90

Invalid project file. 88

IoT Gateway 22-23

IoT Gateway — MQTT 21

Item failed to publish 98

www. ptc.com

127

Kepware Edge

Items on this page may not be changed while the driver is processing tags. 112

J

Job 56

Job Cleanup 56

JSON Response Structure 43

K

Kepware Edge 18

KeyStore 23

keytool 23

L

LBCD 38

License for feature <name> cannot be accessed [error=<code>] and must be reactivated. 118

License Recheck 16

License Server 16

License synchronization required. Initiating request... 120

Licensing 15

Licensing for this system is currently provided by a file-based license. 119

Linear 39

Linux 10

LLong 38

Location 15

Log Endpoints 20

Log Retrieval 42

Long 38

M

Man Machine Interface (MMI) 23

Mapped to 40

Maximum channel count exceeded for the lite version '<name>' driver license. Edit project and restart the
server. 121

Maximum device count exceeded for the lite version '<number>' license. Edit project and restart the server. 117

Maximum driver count exceeded for the lite version '<name>' driver license. Edit project and restart the
server. 120

Maximum runtime tag count exceeded for the lite version '<number>' license. Edit client project and restart the
server. 117

Member 45

www. ptc.com

128

Kepware Edge

Missing server instance certificate '<cert location>'. Please use the OPC UA Configuration Manager to reissue
the certificate. 106

MQTT 21

MQTT Agent 21, 23

MQTT client 10

multidimensional arrays are not supported. | Item name = '%s'. 98

Multiple Objects 52

N

Negate 39

No tags were created by the tag generation request. See the event log for more information. 94

O

Object 52

Object count limit has been exceeded on feature <name>. Time limited usage will expire at <date/time>. 119

Object type '<name>' not allowed in project. 95

One or more value change updates lost due to insufficient space in the connection buffer. | Number of lost
updates = <count>. 98

OPC UA 23

OPC UA Certificate Management 24

OPC UA Endpoint 82

OPC UA server 85

Operation 41

P

password 18

Password 48, 65

Password for user has been changed. | User = '<name>'. 97

Performing initial license request to the license server. 120

Permissions definition has changed on user group. | Group = '<name>'. 96

Plug-in Endpoints 20

Port 18, 85

PORT 25

Ports 18

Postman 10, 66

Project 18

Project Load 57

Project Permissions 77

Project Properties — OPC UA 64

Project Properties (via API Commands) 61

Project Save 58

www. ptc.com

129

Kepware Edge

ProjectSave 60

Properly Name a Channel, Device, Tag, and Tag Group 40

Property Definitions 46

Property Tags 35

Property Types 47

Property Validation Error Object 75

Q

QWord 38

R

Raw 39

Reinitialize Runtime Service 56

Reinitializing ThingWorx connection due to a project settings change initiated from the Configuration API. 105

Reinitializing ThingWorx connection due to a project settings change initiated from the platform. 104

Rejecting attempt to change model type on a referenced device '<channel device>'. 92

Removing a Device 70

Removing a Tag 73

Removing a Tag Group 75

Removing a UA Endpoint 85

Removing Channel 68

Request failed with license server. 116

Requesting return of all borrowed licenses... 121

Response Codes 61

REST 18, 41, 66, 69-70

Restart 56

Resumed pushing property updates to thing
the error condition was resolved. | Thing name = '<name>'. 105

S

Save 15

Scaled 39

Scan rate override 40

security 11, 18

Security 41, 43, 55, 65, 78, 85

Self-Signed Certificates 23

Serial communications error on channel. | Error mask = <mask>. 111

Server Administration Endpoints 20

Service 55

Serviced one or more autobind requests. | Count = <count>. 105

www. ptc.com

130

Kepware Edge

Short 38

Simulation mode is disabled on device '<device>'. 94

Simulation mode is enabled on device '<device>'. 94

Socket error occurred binding to local port. | Error = <error>, Details = '<information>'. 110

Socket error occurred checking for readability. | Error = <error>, Details = '<information>'. 113

Socket error occurred checking for writability. | Error = <error>, Details = '<information>'. 114

Socket error occurred connecting. | Error = <error>, Details = '<information>'. 113

Socket error occurred receiving data. | Error = <error>, Details = '<information>'. 113

Socket error occurred sending data. | Error = <error>, Details = '<information>'. 113

Sorting 49

Specified address is not valid on device. | Invalid address = '<address>'. 112

Square Root 39

Starting <name> device driver. 94

Statistics Tags 36

Stopping <name> device driver. 94

Store and Forward datastore reset due to file IO error or datastore corruption. 102

Store and Forward datastore size limit reached. 99

Store and Forward datastore unable to store data due to full disk. 99

Store and Forward mode changed. | Forward Mode = '<mode>'. 106

String 38

Successful communication with the license server. Renew interval established at %d seconds. 120

Successfully deleted stored data from the Store and Forward datastore. 105

System Requirements 10

System Services 55

System Tags 28

T

Tag generation results for device '<device>'. | Tags created = <count>, Tags not overwritten = <count>. 96

Tag generation results for device '<device>'. | Tags created = <count>, Tags overwritten = <count>. 95

Tag generation results for device '<device>'. | Tags created = <count>. 95

Tag Group Properties 40

Tag Properties — General 27

Tag Properties — Scaling 38

The <name> device driver was not found or could not be loaded. 87

The <name> feature license has been removed. The server will enter Time Limited mode unless the license is
restored before the grace period expires. 118

The Config API is unable to load the SSL certificate. 87

The Config API SSL certificate contains a bad signature. 87

The Config API SSL certificate has expired. 87

The Config API SSL certificate is self-signed. 87

The endpoint '<url>' has been added to the UA Server. 97

The endpoint '<url>' has been disabled. 97

The endpoint '<url>' has been enabled. 97

www. ptc.com

131

Kepware Edge

The endpoint '<url>' has been removed from the UA Server. 97

The FlexNet Licensing Service must be enabled to process licenses. Failure to enable the service results in
Time Limited mode. 118

The license for this product has expired and will soon stop functioning. Please contact your sales representative
to renew the subscription. 119

The maximum number of configured Industrial Things has been reached, count = <number>. Consider increas-
ing the value of the Max Thing Count. 104

The maximum number of updates has been reached, count = <count>. 104

The push type of one or more properties are set to never push an update to the platform. | Count =
<count>. 101

The server is configured to send an update for every scan, but the push type of one or more properties are set to
push on value change only. | Count = <count>. 100

The specified network adapter is invalid on channel '%1' | Adapter = '%2'. 93

The UA server certificate is expired. Please use the OPC UA Configuration Manager to reissue the
certificate. 106

The UA Server failed to initialize an endpoint configuration. | Endpoint Name
'<name>'. 108

The UA Server failed to register with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 107

The UA Server failed to unregister from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 108

The UA Server successfully registered with the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 108

The UA Server successfully unregistered from the UA Discovery Server. | Endpoint URL
'<endpoint url>'. 108

The version of component <name> (<version>) is required to match that of component <name>
(<version>). 121

THING_NAME 25

ThingWorx Native Interface 21

ThingWorx Native Interface Certificate Management 26

ThingWorx Native Interface Example 25

ThingWorx Platform 10

ThingWorx request to add item failed. The item was already added. | Item name = '<name>'. 100

ThingWorx request to remove an item failed. The item is bound and the force flag is false. | Item name =
'<name>'. 101

ThingWorx request to remove item failed. The item doesn't exist. | Item name = '<name>'. 100

This property may not be changed while the driver is processing tags. 112

Time Limited mode has expired. 116

Time limited usage period on feature <name> has expired. 119

Trust Store 17

Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'. 117

Type Definitions 45

U

UA Server 21

uaserver 86

Unable to add channel due to driver-level failure. 88

www. ptc.com

132

Kepware Edge

Unable to add device due to driver-level failure. 88

Unable to allocate thread resource. Please check the memory usage of the application. 109

Unable to apply settings change initiated by the Platform. Permission Denied. | User = '<user name>'. 102

Unable to backup project file to '<path>' [<reason>]. The save operation has been aborted. Verify the des-
tination file is not locked and has read/write access. To continue to save this project without a backup,
deselect the backup option under Tools | Options | General and re-save the project. 89

Unable to configure com port with specified parameters. | Port = COM<number>, OS error = <error>. 109

Unable to connect or attach to Store and Forward datastore. Using in-memory store. | In-memory store size
(updates) = <count>. 102

Unable to generate a tag database for device '<device>' 91

Unable to generate a tag database for device '<device>'. The device is not responding. 90

Unable to load driver DLL '<name>'. 92

Unable to load driver DLL '<name>'. Reason 93

Unable to load plug-in DLL '<name>'. 93

Unable to load plug-in DLL '<name>'. Reason 93

Unable to load project <name> 89

Unable to load the '<name>' driver because more than one copy exists ('<name>' and '<name>'). Remove the
conflicting driver and restart the application. 88

Unable to load the project due to a missing object. | Object = '<object>'. 90

Unable to save project file <name> 89

Unable to start the Config API Service. Possible problem binding to port. 87

Unable to start the UA server due to certificate load failure. 107

Unable to use network adapter '<adapter>' on channel '<name>'. Using default network adapter. 91

Unable to write to address '<address>' on device '<name>'. 112

Unable to write to address on device. | Address = '<address>'. 112

Update MQTT Agent 22

Updating a Channel 67

Updating a Device 69

Updating a Tag 72

Updating a Tag Group 74

Updating a UA Endpoint 84

Updating a User 79

Updating a User Group 80

URL 85

User added to user group. | User = '<name>', Group = '<name>'. 96

User group has been created. | Group = '<name>'. 96

User group has been disabled. | Group = '<name>'. 96

User group has been enabled. | Group = '<name>'. 96

User group has been renamed. | Old name = '<name>', New name = '<name>'. 96

User Groups 75

User has been deleted. | User = '<name>'. 97

User has been disabled. | User = '<name>'. 96

User has been enabled. | User = '<name>'. 96

User has been renamed. | Old name = '<name>', New name = '<name>'. 96

User Management 75

User moved from user group. | User = '<name>', Old group = '<name>', New group = '<name>'. 96

www. ptc.com

133

Kepware Edge

Users 78

V

Validation error on '<tag>'
<error>. 92
Invalid scaling parameters. 92

Version mismatch. 88

View MQTT Agent Tags 22

View MQTT Agents 22

W

What is a Channel? 26

What is a Device? 26

What is a Tag Group? 39

What is a Tag? 27

What is the Alias Map? 40

What is the Event Log? 40

Winsock initialization failed. | OS error = <error>. 110

Winsock shut down failed. | OS error = <error>. 110

Winsock V1.1 or higher must be installed to use this driver. 110

Word 38

Write to property failed. | Property name = '<name>', reason = <reason>. 100

Write to property failed. | Thing name = '<name>', property name = '<name>', reason = <reason>. 101

www. ptc.com

134

	Table of Contents
	Introduction
	Kepware Edge System Requirements
	Configuration API Service — Architecture
	Installation
	Installation — Deploying the Container
	Installation — Configure the Project
	Application Data
	Licensing
	Command Line Interface — edge_admin

	Getting Started
	Configuration API Service — Documentation Endpoint
	Configuration API Service — Endpoint Mapping
	Configuration API Service — Health Status Endpoint
	Enabling Interfaces
	IoT Gateway — MQTT
	Configuring the IoT Gateway
	Configuring Self-Signed Certificates for MQTT Broker Connection for MQTT Agent

	Interfaces and Connectivity
	OPC UA Interface
	OPC UA Certificate Management

	Configuring the ThingWorx Native Interface
	ThingWorx Native Interface Certificate Management

	Components and Concepts
	What is a Channel?
	What is a Device?
	What is a Tag?
	Tag Properties — General

	System Tags
	Property Tags
	Statistics Tags
	Dynamic Tags
	Tag Properties — Scaling

	What is a Tag Group?
	Tag Group Properties

	What is the Alias Map?
	Alias Properties

	What is the Event Log?
	Properly Name a Channel, Device, Tag, and Tag Group

	Configuration API Service
	Security
	Documentation
	Configuration API Service — Concurrent Clients
	Configuration API Service — Log Retrieval
	Configuration API Service — Content Retrieval
	Configuration API Service — Data
	Configuration API Service — Invoking Services
	Configuration API Service — Reinitialize Runtime Service
	Configuration API Service — Project Load
	Configuration API Service — Project Save
	Configuration API Service — Automatic Tag Generation

	Configuration API Service — Project Example
	Configuration API Service — Response Codes
	Project Properties (via API Commands)
	Project Properties — OPC UA
	Configuration API Service — Channel Properties
	Configuration API Service — Creating a Channel
	Configuration API Service — Updating a Channel
	Configuration API Service — Removing Channel
	Configuration API Service — Device Properties
	Configuration API Service — Creating a Device
	Configuration API Service — Updating a Device
	Configuration API Service — Removing a Device
	Configuration API Service — Creating a Tag
	Configuration API Service — Updating a Tag
	Configuration API Service — Removing a Tag
	Configuration API Service — Creating a Tag Group
	Configuration API Service — Updating a Tag Group
	Configuration API Service — Removing a Tag Group
	Configuration API Service — Property Validation Error Object
	Configuration API Service — User Management
	Configuration API Service — Creating a User
	Configuration API Service — Creating a User Group
	Configuration API Service — Updating a User
	Configuration API Service — Updating a User Group
	Configuration API Service — Configuring User Group Project Permissions
	Configuration API Service — Configuring Licensing Server
	Configuration API Service — OPC UA Endpoint
	Configuration API Service — Creating a UA Endpoint
	Configuration API Service — Updating a UA Endpoint
	Configuration API Service — Removing a UA Endpoint

	Connecting with an OPC UA Client Using UaExpert
	Event Log Messages
	The Config API SSL certificate contains a bad signature.
	The Config API is unable to load the SSL certificate.
	Unable to start the Config API Service. Possible problem binding to port.
	The Config API SSL certificate has expired.
	The Config API SSL certificate is self-signed.
	Configuration API started without SSL on port <port number>.
	Configuration API started with SSL on port <port number>.
	The <name> device driver was not found or could not be loaded.
	Unable to load the '<name>' driver because more than one copy exists ('<name>...
	Invalid project file.
	Unable to add channel due to driver-level failure.
	Unable to add device due to driver-level failure.
	Version mismatch.
	Unable to load project <name>:
	Unable to back up project file to '<path>' [<reason>]. The save operation has...
	<feature name> was not found or could not be loaded.
	Unable to save project file <name>:
	Device discovery has exceeded <count> maximum allowed devices. Limit the disc...
	<feature name> is required to load this project.
	Unable to load the project due to a missing object. | Object = '<object>'.
	Invalid Model encountered while trying to load the project. | Device = '<devi...
	Cannot add device. A duplicate device may already exist in this channel.
	Auto-generated tag '<tag>' already exists and will not be overwritten.
	Unable to generate a tag database for device '<device>'. The device is not re...
	Unable to generate a tag database for device '<device>':
	Auto generation produced too many overwrites, stopped posting error messages.
	Failed to add tag '<tag>' because the address is too long. The maximum addres...
	Unable to use network adapter '<adapter>' on channel '<name>'. Using default ...
	Rejecting attempt to change model type on a referenced device '<channel devic...
	Validation error on '<tag>': <error>.
	Unable to load driver DLL '<name>'.
	Validation error on '<tag>': Invalid scaling parameters.
	Device '<device>' has been automatically demoted.
	Unable to load plug-in DLL '<name>'.
	Unable to load driver DLL '<name>'. Reason:
	Unable to load plug-in DLL '<name>'. Reason:
	The specified network adapter is invalid on channel '%1' | Adapter = '%2'.
	No tags were created by the tag generation request. See the event log for mor...
	<Product> device driver loaded successfully.
	Starting <name> device driver.
	Stopping <name> device driver.
	<Product> device driver unloaded from memory.
	Simulation mode is enabled on device '<device>'.
	Simulation mode is disabled on device '<device>'.
	Attempting to automatically generate tags for device '<device>'.
	Completed automatic tag generation for device '<device>'.
	A client application has enabled auto-demotion on device '<device>'.
	Data collection is enabled on device '<device>'.
	Data collection is disabled on device '<device>'.
	Object type '<name>' not allowed in project.
	Created backup of project '<name>' to '<path>'.
	Device '<device>' has been auto-promoted to determine if communications can b...
	Failed to load library: <name>.
	Failed to read build manifest resource: <name>.
	A client application has disabled auto-demotion on device '<device>'.
	Tag generation results for device '<device>'. | Tags created = <count>.
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Tag generation results for device '<device>'. | Tags created = <count>, Tags ...
	Access to object denied. | User = '<account>', Object = '<object path>', Perm...
	User moved from user group. | User = '<name>', Old group = '<name>', New grou...
	User group has been created. | Group = '<name>'.
	User added to user group. | User = '<name>', Group = '<name>'.
	User group has been renamed. | Old name = '<name>', New name = '<name>'.
	Permissions definition has changed on user group. | Group = '<name>'.
	User has been renamed. | Old name = '<name>', New name = '<name>'.
	User has been disabled. | User = '<name>'.
	User group has been disabled. | Group = '<name>'.
	User has been enabled. | User = '<name>'.
	User group has been enabled. | Group = '<name>'.
	Password for user has been changed. | User = '<name>'.
	The endpoint '<url>' has been added to the UA Server.
	The endpoint '<url>' has been removed from the UA Server.
	The endpoint '<url>' has been disabled.
	The endpoint '<url>' has been enabled.
	User has been deleted. | User = '<name>'.
	Group has been deleted. | Group = '<name>'.
	Connection to ThingWorx failed. | Platform = <host:port resource>, error = <r...
	Error adding item. | Item name = '<item name>'.
	Failed to trigger the autobind complete event on the platform.
	Connection to ThingWorx failed for an unknown reason. | Platform = <host:port...
	One or more value change updates lost due to insufficient space in the connec...
	Item failed to publish; multidimensional arrays are not supported. | Item nam...
	Store and Forward datastore unable to store data due to full disk.
	Store and Forward datastore size limit reached.
	Connection to ThingWorx was closed. | Platform = <host:port resource>.
	Failed to autobind property. | Name = '<property name>'.
	Failed to restart Thing. | Name = '<thing name>'.
	Write to property failed. | Property name = '<name>', reason = <reason>.
	ThingWorx request to add item failed. The item was already added. | Item name...
	ThingWorx request to remove item failed. The item doesn't exist. | Item name ...
	The server is configured to send an update for every scan, but the push type ...
	The push type of one or more properties are set to never push an update to th...
	ThingWorx request to remove an item failed. The item is bound and the force f...
	Write to property failed. | Thing name = '<name>', property name = '<name>', ...
	Error pushing property updates to thing. | Thing name = '<name>'.
	Unable to connect or attach to Store and Forward datastore. Using in-memory s...
	Store and Forward datastore reset due to file IO error or datastore corruption.
	Unable to apply settings change initiated by the Platform. Permission Denied....
	Configuration Transfer to ThingWorx Platform failed.
	Configuration Transfer to ThingWorx Platform failed. | Reason = '<reason>'
	Failed to delete stored updates in the Store and Forward datastore.
	Configuration Transfer from ThingWorx Platform failed.
	Configuration Transfer from ThingWorx Platform failed. | Reason = '<reason>'
	Check that your Application Key is properly formatted and valid.
	The maximum number of configured Industrial Things has been reached, count = ...
	The maximum number of updates has been reached, count = <count>.
	A publish to Thingworx has timed out.
	Connected to ThingWorx. | Platform = <host:port resource>, Thing name = '<nam...
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Dropping pending autobinds due to interface shutdown or reinitialize. | Count...
	Serviced one or more autobind requests. | Count = <count>.
	Reinitializing ThingWorx connection due to a project settings change initiate...
	Resumed pushing property updates to thing: the error condition was resolved. ...
	Configuration transfer from ThingWorx initiated.
	Configuration transfer from ThingWorx aborted.
	Successfully deleted stored data from the Store and Forward datastore.
	Store and Forward mode changed. | Forward Mode = '<mode>'.
	Initialized Store and Forward datastore. | Forward Mode = '<mode>' | Datastor...
	Missing server instance certificate '<cert location>'. Please use the OPC UA ...
	Failed to import server instance cert: '<cert location>'. Please use the OPC ...
	The UA server certificate is expired. Please use the OPC UA Configuration Man...
	A socket error occurred listening for client connections. | Endpoint URL = '<...
	The UA Server failed to register with the UA Discovery Server. | Endpoint URL...
	Unable to start the UA server due to certificate load failure.
	Failed to load the UA Server endpoint configuration.
	The UA Server failed to unregister from the UA Discovery Server. | Endpoint U...
	The UA Server failed to initialize an endpoint configuration. | Endpoint Name...
	The UA Server successfully registered with the UA Discovery Server. | Endpoin...
	The UA Server successfully unregistered from the UA Discovery Server. | Endpo...
	Com port is in use by another application. | Port = '<port>'.
	Unable to configure com port with specified parameters. | Port = COM<number>,...
	Driver failed to initialize.
	Unable to allocate thread resource. Please check the memory usage of the appl...
	Com port does not exist. | Port = '<port>'.
	Error opening com port. | Port = '<port>', OS error = <error>.
	Connection failed. Unable to bind to adapter. | Adapter = '<name>'.
	Winsock shut down failed. | OS error = <error>.
	Winsock initialization failed. | OS error = <error>.
	Winsock V1.1 or higher must be installed to use this driver.
	Socket error occurred binding to local port. | Error = <error>, Details = '<i...
	Device is not responding.
	Device is not responding. | ID = '<device>'.
	Serial communications error on channel. | Error mask = <mask>.
	Invalid array size detected writing to tag <device name>.<address>.
	Unable to write to address on device. | Address = '<address>'.
	Items on this page may not be changed while the driver is processing tags.
	Specified address is not valid on device. | Invalid address = '<address>'.
	Address '<address>' is not valid on device '<name>'.
	This property may not be changed while the driver is processing tags.
	Unable to write to address '<address>' on device '<name>'.
	Socket error occurred connecting. | Error = <error>, Details = '<information>'.
	Socket error occurred receiving data. | Error = <error>, Details = '<informat...
	Socket error occurred sending data. | Error = <error>, Details = '<informatio...
	Socket error occurred checking for readability. | Error = <error>, Details = ...
	Socket error occurred checking for writability. | Error = <error>, Details = ...
	%s |
	<Name> Device Driver '<name>'
	Could not load item state data. Reason: <reason>.
	Could not save item state data. Reason: <reason>.
	Feature '<name>' is not licensed and cannot be used.
	Failed to load the license interface, possibly due to a missing third-party d...
	Failed to initialize licensing. Unable to load the demo file license (Error $...
	Failed to initialize licensing. Unable to initialize the licensing identity (...
	Failed to initialize licensing. Unable to initialize trusted storage (Error $...
	Failed to initialize licensing. Unable to initialize the licensing publisher ...
	Failed to initialize licensing. Unable to establish system time interface (Er...
	Failed to initialize licensing (Error <error code>)
	Failed to process the activation response from the license server (Error: %...
	Failed to create an activation request (Error %x)
	Request failed with license server.
	Time Limited mode has expired.
	Maximum device count exceeded for the lite version '<number>' license. Edit p...
	Maximum runtime tag count exceeded for the lite version '<number>' license. E...
	Type <numeric type ID> limit of <maximum count> exceeded on feature '<name>'.
	<Object type name> limit of <maximum count> exceeded on feature '<name>'.
	The FlexNet Licensing Service must be enabled to process licenses. Failure to...
	The <name> feature license has been removed. The server will enter Time Limit...
	License for feature <name> cannot be accessed [error=<code>] and must be reac...
	Feature %1 is time limited and will expire on %2 at %3.
	Feature %1 is time limited and will expire on %2 at %3.
	Object count limit has been exceeded on feature <name>. Time limited usage wi...
	Feature count limit exceeded on <name>. Time limited usage will expire at <da...
	Time limited usage period on feature <name> has expired.
	Failed to obtain licenses from the license server.
	The license for this product has expired and will soon stop functioning. Plea...
	Licensing for this system is currently provided by a file-based license.
	Failed to connect to the license server.
	Failed to return licenses to the LLS.
	Maximum driver count exceeded for the lite version '<name>' driver license. E...
	Connecting to the license server.
	Successful communication with the license server. Renew interval established ...
	License synchronization required. Initiating request...
	Performing initial license request to the license server.
	Connected to license server, no changes.
	Requesting return of all borrowed licenses...
	Cannot add item. Requested count of <number> would exceed license limit of <m...
	The version of component <name> (<version>) is required to match that of comp...
	Maximum channel count exceeded for the lite version '<name>' driver license. ...
	%s is now licensed.

	Index

